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The form of resonance line-shapes unveils information about its non-
perturbative properties and formation mechanisms. Here, we study the
non-Breit–Wigner energy distribution of the resonance ψ(3770) using an
unitarized effective Lagrangian approach that includes the effect of the
nearby threshold D+D−. Two poles are found in the second Riemann
sheet near the resonance amplitude. We discuss the setting of the free
parameters and possible effects contributing to the signal.
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1. Introduction

The resonance ψ(3770) is listed in Particle Data Group with average
parameters M = 3778.1±1.2 MeV and Γ = 27.5±0.9 MeV [1]. The state is
predominantly an n2S+1LJ = 13D1 vector charmonium; it is just above the
DD̄ hadronic decay channel. In Ref. [2], BES data have shown a clearly non-
Breit–Wigner line-shape. In other data, such as in BaBar [3] and KEDR [4],
such a distortion is also visible, namely a higher slope on the right-hand side
of the resonance, while on the left-hand energy side the slope appears to
display, in addition, a structure.

One aims to understand the reason for such asymmetries in the line-
shape during the formation of the ψ(3770). Interferences due to the DD̄
kinematic background are the most obvious to consider, as shown in Ref. [5],
justifying the higher slope on the right. The contribution of the ψ(2S) is also
taken into account in Refs. [6]. Indeed, it is likely that though dominantly
a D-wave, the ψ(3770) is a mixed 3D1–3S1 state. The inclusion of such an
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effect in itself is not enough to reproduce the structure of the left-hand side
of the resonance that has been seen in [2], though, within errors, it is in
agreement with the data. In Ref. [7], an estimation of the non-DD̄ hadronic
background has been performed, though it should be residual. Predictions
involving pp̄ production, leading to higher cross sections, have been made in
Refs. [8, 9]. More within our goal, in Ref. [10] non-perturbative dynamical
effects in the formation of the ψ(3770) are studied in an effective Lagrangian
model including the ψ(2S), DD̄ loops and D–D̄ rescattering.

In this study, we analyze the dynamical contribution of the D+D− loop
to the deformation in the line-shape of the ψ(3770) by employing an uni-
tarized effective Lagrangian model. Moreover, driven by the suggestion in
Ref. [2] of a two resonance structure, we study the poles on the second
Riemann sheet. Indeed, similar models have been employed to light-meson
systems where it has been shown that, besides the regular “seed” pole, extra
dynamical poles have been found, alias the a0(980) [11] and the κ(800) [12],
leading to deformed line-shapes in the amplitude (for previous work on the
subject, see Ref. [13]). Similar phenomena is not forbidden to exist for heavy
systems.

2. An effective description of ψ(3770)

2.1. The Lagrangian

We consider the decay ψ(3770)→ D+D− of a charmonium vector to two
pseudoscalars. The interacting Lagrangian density LI is defined by

LI = igψDDψµ
(
∂µD+D− − ∂µD−D+

)
, (1)

where the fields ψ, D+ and D− are interacting in the space with a coupling
gψDD. (An analogous, here omitted, interaction term couples ψ to D0D̄0.)
This Lagrangian leads to the amplitude |M|2 for the process ψ → D+D−

|M|2 = 4
3gψDD p2(s)f(p) , (2)

where p(s) is the relativistic center-of-mass (CM) momentum ofD+D−, with
s the CM energy squared and f(p) an extra cutoff function that ensures the
convergence of the self-energy (defined in Sec. 2.3) with the momentum. We
use the damping form

f(p) = e−2p
2/Λ2

, (3)

where Λ is the cutoff parameter. Hence, the model contains two free pa-
rameters, gψDD and Λ. If we assume Λ to be proportional to the inverse
of the size of the wave-function, the Fourier transform of Eq. (3) leads to a
Gaussian in coordinate space that models a wave-packet. Therefore, we can
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estimate the size of our system using a Schrödinger model. Formally, the
cutoff function f(p) can be included in the Lagrangian by rendering it non-
local [14]; moreover, even if we use a 3D cutoff, the covariance is satisfied,
see details in Ref. [15].

2.2. Size of the wave-function

Let us consider the coupled system cc̄–D+D−, where cc̄ is a charmonium
system with quantum numbers 3D1, and D+D− is a meson–meson decay
channel. The wave function is computed following the model in Ref. [16].
For the model parameters “string-breaking” 4.0 GeV−1 and coupling 0.8, we
find a pole at 3773.1− i3.4 MeV to which corresponds a wave-function with
r.m.s. value

√
〈r2〉 = 4.74 GeV−1 ∼ 0.93 fm. If

√
〈r2〉 ∼ 1/Λ, our previously

free parameter Λ in (3) is around 211 MeV.

2.3. Spectral functions

The self-energy Σ of a two-meson loop can be written as

Σ(s) = Ω(s) + i
√
sΓ (s) , Ω, Γ ∈ < , (4)

where Γ (s) is the width’s function of the resonance and it is given (see
Ref. [1]) by

Γ (s) =
1

8π

p(s)

s
|M|2 , (5)

while the real part Ω can be computed from the width through the Kramers–
Krönig dispersion relation

Ω(s) =
1

π

∞∫
sth

√
s′Γ (s′)

s′ − s
ds′ . (6)

The propagator is given by

∆(s) =
1

s−m2
ψ +Σ(s)

, (7)

and the spectral function, as a function of the CM energy, by (E =
√
s )

dψ(E) = −2E

π
Im ∆(E) . (8)

To ensure faster convergence of the integral in Eq. (6), we use instead of Ω(s)
the once-subtracted dispersion relation Ω1S(s) = Ω(s) − Ω(m2

ψ) leading to
Σ1(s) = Ω1S(s) + i

√
sΓ (s). For further details, see Ref. [17].
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2.4. Unitarization

In the so-called Källen–Lehmann representation, we have

∆(s) =

∞∫
0

ds′
dS(s′)

s− s′ + iε
(9)

in the limit of s→∞

1

s
=

1

s

∞∫
0

ds′dS(s′)⇒
∞∫
0

ds′dS(s′) = 1 , (10)

where the left part comes from Eq. (7) considering that Σ(s) goes to zero
due to the cutoff function.

2.5. Poles

In order to find poles on the second Riemann sheet, we analytically con-
tinue the loop function Eq. (4) to the complex plane, and the pole condition
is given when the denominator of the propagator (7) is zero, i.e.,

E2 −m2
R +Σ(E) = 0 , E ∈ C , (11)

with the energy on the second Riemann sheet.

3. Line-shape and poles

In Fig. 1, we show the unitarized line-shape distribution according to
Eq. (8) in D+D− channel, using the parameters mψ = 3773.13 MeV (mass
fit in [1]), Λ = 211 MeV, and gψDD = 44

√
2, represented by the solid

line. The result reproduces the structure observed in the BES data, namely
the higher slope on the higher energy side, and the deformation on the
lower energy side. We find two poles corresponding to these parameters:
3744 − i11 MeV and 3775 − i6 MeV. Furthermore, we study the influence
of the strong coupling g = gψDD on the line-shape. For g̃ = 0.7g, the
line-shape exhibits only one peak, yet with two poles at 3741 − i20 MeV
and 3778 − i3 MeV. For g̃ = 1.3g, the line-shape shows clearly two peaks,
corresponding to the poles 3743 − i4 MeV and 3778 − i9 MeV. The lower
energy pole is generated dynamically and disappears if g is small enough,
remaining only the higher energy pole coming from the “seed”. For larger
g values, the seed pole moves to higher energies while the dynamical pole
approaches the threshold. The existence of two poles does not necessarily
mean the existence of two different resonances, instead, it means that the
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D–D̄ pair, more than contributing to the kinematic background only, plays
a dynamical role in the formation of the ψ(3770). One of the reasons might
be not only because the ψ(3770) is above and close to the DD̄ threshold,
but also because it is a dominantly D-wave state and, therefore, its wave
function is larger than in the case of S-wave states, conferring its properties
of lighter systems.

Fig. 1. Line-shape of the resonance ψ(3770) in the D+D− channel. Solid line g̃ = g,
dotted line g̃ = 0.7g, and dashed line g̃ = 1.3g (cf. the text).

4. Conclusions and outlook

A correct understanding of resonance signals is important to disentangle
the non-perturbative phenomena hidden in the line-shapes. Here, we have
performed a dynamical study of the ψ(3770) by using an effective Lagrangian
model, which points out the relevance of the D+D− loop, viz. coupled-
channel, to the formation of the resonance. We find a two-pole structure in
the signal. Further studies include the final-state rescattering, the influence
of the cutoff function, and the lepton–lepton decay widths.
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