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A novel formulation of the second-order relativistic viscous fluid dy-
namics based on the effective Boltzmann equation for quasi-particles with
medium-dependent masses is briefly reviewed. The evolution equations for
the shear and bulk dissipative corrections, and the corresponding transport
coefficients are presented. Resulting approach allows for thermodynamically-
consistent incorporation of the lattice QCD equation of state in the fluid
dynamical framework.
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1. Introduction

One of the main goals of the ultra-relativistic heavy-ion collision exper-
iments is to study strongly-interacting QCD matter at extreme conditions.
It is believed that such a hot and dense system will reach proximity of
the local thermal equilibrium (LTE) allowing to study thermodynamic and
transport properties of the system, as encoded in its equation of state (EoS)
and kinetic coefficients. If LTE is achieved immediately after collision and
the interactions maintain this state during subsequent evolution, the fluid
dynamical description of the system may be applicable. Successful descrip-
tion of the experimental data on correlations and fluctuations within fluid
dynamical framework proves adequacy of such an approach [1–3]. Despite
its successes, fluid dynamics is still plagued with a number of problems. Of
particular importance is the question of a thermodynamically-consistent in-
corporation of the realistic EoS, such as the one obtained in lattice QCD
(lQCD) calculations [3].
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Canonically, fluid dynamics is constructed as an order-by-order expan-
sion around equilibrium state in powers of thermodynamic gradients, where
the zeroth-order theory is that of ideal fluid dynamics [1–3]. The univer-
sal existence of dissipative effects in all physical systems and requirement
of causality implies usage of viscous fluid dynamics at least at its second
order. Unlike the non-relativistic first-order Navier–Stokes theory, the form
of the relativistic fluid dynamical equations of motion is not universal. Usu-
ally, a simple relativistic kinetic theory of an ideal gas of uncharged on-shell
particles following the Boltzmann equation is used to construct equations
of motion [1–3]. In such a case, the problem arises how to incorporate a
realistic EoS in a thermodynamically-consistent way [4].

In this proceedings contribution, we first explain the problem of breaking
of the basic thermodynamic relations in the relativistic kinetic theory de-
scription of quasi-particles with medium-dependent masses. Subsequently,
following Ref. [5], we present a method to derive the second-order viscous
fluid dynamical equations and respective transport coefficients based on in-
troducing the idea of the non-equilibrium (bag) mean field and using the
effective Boltzmann equation. Resulting approach allows for introducing in
a thermodynamically-consistent way any realistic EoS.

2. Quasi-particles and thermodynamic consistency

When deriving relativistic fluid dynamics from the kinetic theory, one
usually considers the system of ideal (non-interacting) uncharged on-shell
particles of a single species. The resulting EoS of such a system depends
only parametrically on the mass of the constituents (m = const.) [1]. Hence,
within this approach, it is impossible to reproduce a realistic EoS, such as
the one obtained using lQCD calculations.

A possible solution of this problem is to introduce notion of quasi-
particles and consider temperature dependence of (now treated as effec-
tive) mass, m = m(T ) [6]. While at large-T limit of QCD, the idea of
quasi-particles may be physically sound (m ∼ T ) [7], at low temperatures
(especially in the QCD phase-transition region), the quasi-particles do not
correspond to any real excitations of the underlying theory. Such a proce-
dure has, however, a major drawback of violating the basic thermodynamic
relations [4]. The thermodynamic consistency may be restored by introduc-
ing the additional mean field B0(T ), whose presence gives rise to the effective
in-medium masses [4]. The B0(T ) field may be included in the Lorentz co-
variant way by modifying the kinetic-theory definition of the equilibrium
energy-momentum tensor [8–12]

Tµνeq =

∫
dP pµpν feq +B0(T ) gµν , (1)
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where
∫

dP =
∫

d4p 2 Θ(pµtµ) δ(pµpµ −m2)/(2π)3 (with tµ being arbitrary
time-like vector), feq is the equilibrium distribution function, and gµν =
diag (1,−1,−1,−1) is the metric tensor. Using definitions of energy density
and pressure

E0 = uµT
µν
eq uν , P0 = −1

3∆µνT
µν
eq , (2)

respectively, where uµ is the four-velocity of the fluid in the Landau frame,
and ∆µν = uµuν − gµν , one finds that satisfying thermodynamic relation

S0 ≡
dP0
dT

=
E0 + P0
T

, (3)

requires
dB0

dT
= −m dm

dT

∫
dPfeq . (4)

We note here that the entropy density S0 in Eq. (3) is independent of the
B0(T ) field, which suggests that it may be used to extract m(T ) from the
lQCD data [11].

3. Non-equilibrium mean field

In the case when the system is out of equilibrium, Eq. (1) has to be
generalized to [5]

Tµν =

∫
dP pµpν f +Bµν , (5)

where the distribution function now contains the non-equilibrium correc-
tion, f = feq + δf . It is thus natural to split the second term in Eq. (5)
into equilibrium and non-equilibrium part, Bµν = B0g

µν + δBµν . The non-
equilibrium part δBµν is fixed by the requirement of conservation of energy
and momentum, ∂µTµν = 0. In general, due to the symmetry of Tµν , the
non-equilibrium part δBµν can have ten independent components. However,
the energy-momentum conservation provides only four constraints. For that
reason, we make the following Ansatz, which restricts the number of inde-
pendent components of δBµν [5]

δBµν = b0 g
µν + uµbν + bµuν , (6)

where bµ satisfies the requirement uµbµ = 0.
We note here that the idea of the non-equilibrium mean field was first

introduced to include realistic EoS in the quasi-particle formulation of the
anisotropic hydrodynamics [13–15].
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4. Evolution equations for dissipative fluxes

Using definitions of the energy-momentum tensors (1) and (5) and the
Ansatz (6), the bulk pressureΠ and shear tensor πµν corrections are given by

Π ≡ −1
3∆αβ

(
Tαβ − Tαβeq

)
= −1

3∆αβ

∫
dPpαpβδf − b0 , (7)

πµν ≡ ∆µν
αβ

(
Tαβ − Tαβeq

)
= ∆µν

αβ

∫
dPpαpβδf , (8)

respectively, where ∆µν
αβ = 1

2(∆µ
α∆ν

β +∆µ
β∆

ν
α − 2

3∆
µν∆αβ) is the symmetric

traceless projector orthogonal to uµ. The equations of motion for the dissi-
pative quantities may be obtained using the Chapman–Enskog-like iterative
solution [16–19] of the effective Boltzmann equation for quasi-particles with
T -dependent mass [11,20]

pµ∂
µf +m (∂ρm) ∂(p)ρ f = C[f ] . (9)

For the sake of simplicity, we treat the collision term in the relaxation-time
approximation [21]

C[f ] = −pµu
µ

τR
δf , (10)

where τR is the relaxation time.
At first order in gradients, one gets [5, 11]

Π = −βΠ τR θ , πµν = 2βπ τR σ
µν , (11)

with

βΠ = 5
3 β I3,2 − c

2
s (E + P) + κc2s m

2β I1,1 , (12)
βπ = β I3,2 . (13)

In Eqs. (11)–(13), we introduced β ≡ 1/T , speed of sound squared c2s =
dP/dE , κ ≡ (T/m)(dm/dT ), stress tensor σµν ≡ ∆µν

αβ∇
αuβ , θ ≡ ∂µu

µ,
∇µ ≡ ∆µν∂ν , and the functions

In,q ≡
(−1)q

(2q + 1)!!

∫
dP (pµu

µ)n−2q (pµ∆
µνpν)q feq . (14)

The shear and bulk viscosities are given by the following relations: βπτR = η
and βΠτR = ζ. One should stress here that, while the form (13) of shear
viscosity is the same as in the case of constant masses [19], the expression
for bulk viscosity (13) contains additional contribution due to in-medium
mass.
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Applying the co-moving derivative ˙( ) ≡ uµ∂
µ to Eqs. (7)–(8) [22], one

arrives at the second-order viscous fluid equations for shear and bulk cor-
rections of the form of [5, 19,22–24]

Π̇ = −Π
τΠ
− βΠθ − δΠΠΠθ + λΠππ

µνσµν , (15)

π̇〈µν〉 = −π
µν

τπ
+ 2βπσ

µν + 2π〈µγ ω
ν〉γ − τπππ〈µγ σν〉γ − δπππµνθ + λπΠΠσ

µν ,

(16)

where ωµν ≡ 1
2(∇µuν −∇νuµ) is the vorticity tensor.

The respective transport coefficients have the following form [5]:

δΠΠ = −5

9
χ−

(
1− κm2 I1,1

I3,1

)
c2s +

1

3

βκc2sm
2

βΠ

[(
1− 3c2s

)
(βI2,1 − I1,1)

−
(
1− 3κc2s

)
m2 (βI0,1 + I−1,1)

]
, (17)

λΠπ =
β

3βπ
(2I3,2 − 7I3,3)−

(
1− κm2 I1,1

I3,1

)
c2s , (18)

τππ = 2− 4β

βπ
I3,3 , λπΠ = −2

3
χ , (19)

δππ =
5

3
− 7

3

β

βπ
I3,3 −

β

βπ
κc2sm

2 (I1,2 − I1,1) , (20)

with χ ≡ β[(1−3c2s )(I3,2−I3,1)−(1−3κc2s )m
2(I1,2−I1,1)]/βΠ . As expected,

in the massless limit, Eqs. (15)–(20) reduce to the ones from Ref. [19]. When
supplemented with the four equations of motion for the energy density and
four-velocity, and the realistic EoS (through the form of m(T ) and B0(T )),
they provide the thermodynamically-consistent framework to describe evo-
lution of matter in the heavy-ion collisions, see Ref. [5].

5. Summary

In this proceedings contribution, we shortly reviewed a new formulation
of the second-order relativistic fluid dynamics for the system made of quasi-
particles with medium-dependent masses based on the effective Boltzmann
equation [5]. Unlike other hydrodynamical models, the presented approach
provides first hydrodynamical framework, which allows for introducing a
realistic lQCD-based EoS in a thermodynamically-consistent way.

This work was supported by the National Science Centre, Poland (NCN)
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