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Current heavy-ion collision experiments might lead to the discovery
of a first-order chiral symmetry breaking phase-transition line, ending in
a second-order critical point. Nevertheless, the extraction of information
about the equilibrium thermodynamic properties of baryonic matter from
the highly dynamic, small, noisy and fluctuating environment formed in
such collisions is an extremely challenging task. We address some of the
limitations present in the experimental search for the QCD critical point.
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1. Introduction

The discovery or exclusion of an expected QCD phase transition would be
a milestone in the study of the fundamental forces of nature, paving the way
towards a better understanding of extremely dense matter. At high densi-
ties, this transition is expected to become of first order at a critical endpoint
of unknown location. While the first-order transition line would be signaled
by a two-peak statistical distribution of observables and by structure forma-
tion from nucleation or spinodal decomposition, the second-order endpoint
is characterized by long-wavelength fluctuations and universal scaling laws.
The mapping of the phase diagram of strong interactions, and more specif-
ically the search for the QCD phase transition, is the major goal of both
the RHIC Beam-Energy Scan and new facilities aiming at producing dense
baryonic matter from the collision of nuclei [1].

A variety of experimental signatures of the QCD critical point has been
discussed in the literature, mostly relying on the enhancement of long-
wavelength fluctuations and universal behavior. Susceptibilities connected
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to conserved charges, for instance, are expected to undergo largely non-
Gaussian, non-monotonic behavior, in the vicinity of the critical point [2,3].
However, the systems which are formed in heavy-ion collisions are small,
short-lived, noisy and fast evolving and are only indirectly probed. It is
thus important to develop robust signatures of criticality, understanding
how different experimental limitations affect them.

2. Imprints of the critical point

The proximity of a second-order critical point is marked by a divergent
increase of the correlation length ξ. The associated long-range behavior
makes microscopic scales irrelevant, resulting in scalings of thermodynamic
susceptibilities/statistical cumulants, which diverge with given powers of ξ,
determined by the universal critical exponents.

We can describe the long-range fluctuations of the order of parameter σ
by a probability distribution

P[σ] ∼ e−Ω[σ]/T ≈ e
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where fluctuations were assumed to be of small amplitude. In that case,
we can make a Gaussian approximation by considering only the mass term,
in which mσ ∼ ξ−1. We also assume fluctuations to be homogeneous and
use σ0 =

∫
d3xσ(x)/V . Finally, we consider their couplings to observable

particles via mass corrections

Lint = −Gσ0 ~π · ~π − g σ0 ψ̄p ψp , (2)

where we consider couplings to pions and protons [3]. The pion–sigma cou-
pling can be roughly estimated to be around G ∼ 300 MeV [2].

Fluctuations of the order parameter are then coupled to observable par-
ticles and will have an impact, for instance, in fluctuations of particle mul-
tiplicities. The effects of these fluctuations can be calculated by looking at
the modification of the single-particle energy levels, due to fluctuations of
the order parameter
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where we have used a Taylor expansion over the mass corrections δm from
fluctuations of the order parameter. Expanding quantities in powers of the
shift in the single-particle energies δω~p and taking averages over the fluctua-
tions of σ0, denoted by (· · · ), it is possible to calculate critical contributions
to averages and correlations. For instance,
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where 〈· · · 〉0 denotes the usual equilibrium averages in a grand canonical
ensemble and Q is a generic quantity [4].

Near a second-order phase transition, the equilibration timescale of the
system also diverges with some power of ξ, in a phenomenon known as
critical slowing-down. This effect limits the growth of ξ and, consequently,
of possible signatures which scale with ξ to some power. It is implemented
in the Ansatz equation [5, 6]

dξ

dt
= A

(
ξ

ξ0

)2−z (ξ0
ξ
− ξ0
ξeq(t)

)
, (5)

where ξeq(t) = ξ0 |t/τ |−ν/βδ, ξ0 ∼ 1.6 fm fixes the initial correlation length
at proper time t = −τ and τ is the typical cooling time before reaching
the neighborhood of the critical point. The critical exponents are given
by α = 0.11, ν = 0.63, z = 2 + α/ν, β = 0.326, δ = 4.80, coming from
universality class arguments [7, 8]. The parameter A in Eq. (5) can be
constrained by imposing causality (i.e. dξ/dt ≤ 1), constraining ξ/ξ0 to
below 1.3 for τ = 1 fm and below 1.9 for τ = 5.5 fm, and significantly
restraining signatures of criticality [4].

3. Effects from the experimental context

The statistics to be measured in collision experiments are not quite the
same as the ones in Eq. (4). They are contaminated by spurious fluctuations,
modified by acceptance and efficiency limitations, and are not calculated over
direct particles only. These effects can be introduced into our calculations
in a simple fashion. Other effects, such as the ones from the dynamical
expansion of the system are, for now, neglected.

3.1. Acceptance window and resonance decay

Effects from a limited acceptance window can be implemented in the cal-
culation of multiplicity fluctuations by considering an acceptance probability
factor F (p), such that each produced particle of momentum p (in modulus)
has a probability F (p) of being detected [4]. For instance, if np is the num-
ber of particles with momentum p, these kinematic cuts modify 〈(∆np)2〉
according to 〈(∆np)2〉acc = F (p)2 〈(∆np)2〉+ F (p)

(
1− F (p)

)
〈np〉 .

Effects from resonance decay can be introduced in a similar fashion. For
a decay into two particles, we consider the probabilities that one, both or
neither of the particles produced in a single decay are found in the acceptance
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window. These probabilities, denoted as P1, P2 and P0, respectively, are
displayed in Fig. 1, in the case of the decay of a rho meson into two pions,
under the cuts 0.3 GeV < pT < 1.0 GeV and |η| < 0.5, where pT is the
transverse momentum and η is the pseudo-rapidity of the decay products.
Results are shown as a function of the momentum p of the resonance and
were calculated by using phase-space volume as a measure of probability.
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Fig. 1. Probability of accepting one, both or none of the pions coming from the
decay of a rho meson, as a function of the total momentum, in modulus.

3.2. Spurious fluctuations

Finally, spurious fluctuations coming from the imperfect control of the
freeze-out thermodynamic variables, such as temperature, chemical poten-
tial and volume can also be included by shifting the one-particle energy lev-
els ω~p. Considering spherically symmetric boundary conditions, for instance,
momentum levels are distributed as pi = αi/R, where R is the system ra-
dius. This means that a geometric fluctuation of the radius of δR will affect
the energy levels through

pi =
αi

R+ δR
≈ p0 i

[
1− δR

R
+

(
δR

R

)2

+ · · ·

]
. (6)

Fluctuations of temperature and chemical potential can likewise be included
by introducing the effective energy shift δωT,µ, such that (ω+δωT,µ− µ)/T =
(ω − (µ+ δµ))/(T + δT ).
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In the results of Fig. 2, we implemented temperature fluctuations of 5%
width and geometric fluctuations coming from the centrality bin width for
the 5% most central collisions.
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Fig. 2. (Color online) Signal in the variance over average ratio of the multiplicity
of charged pions, as a function of ξ, for 0.3 GeV < pT < 1.0 GeV and |η| < 0.5.
The dashed/blue (solid/red) line represents the limit in ξ coming from τ = 1 fm
(5.5 fm).

4. Results and final remarks

The results above were used to calculate the average multiplicity of
charged pions,Mπch , and its variance, Vπch , as a function of ξ. An acceptance
window of 0.3 GeV < pT < 1.0 GeV and |η| < 0.5 was used.

Figure 2 displays results for the percentage by which the example-sig-
nature Vπch/Mπch grows with respect to ξ, with respect to its value at ξ =
0.4 fm, when only critical fluctuations, background fluctuations and the
decay of rho mesons are taken into account. More details and results can be
found in [4], where caveats are also discussed. Future work will extend this
results to the more interesting signatures connected to protons and higher-
order moments of particle multiplicities.
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