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We illustrate how our recently developed renormalization group opti-
mized perturbation (RGOPT) efficiently resums perturbative expansions
in thermal field theories. The residual renormalization scale dependence
of optimized thermodynamical quantities is drastically improved as com-
pared to either standard perturbative expansions, or related methods such
as the screened perturbation or (resummed) hard-thermal-loop perturba-
tion. Our approach is illustrated briefly for the nonlinear sigma model, as
a toy model for thermal QCD. Finally, preliminary applications of RGOPT
to hard thermal loop resummation for the QCD pressure are sketched.
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1. Introduction

For QCD at finite temperatures, lattice simulations have well-established
the crossover ‘transition’ at about Tc ' 170 MeV [1]. However, the presently
unsolved lattice sign problem, which occurs upon considering finite chemical
potentials, prevents those methods from describing the more complete QCD
phase diagram. A possible alternative is to use more analytical nonpertur-
bative approximations, possibly addressing the problem of resumming the
(notoriously badly convergent [2]) standard thermal perturbative expansion.
One of these approximations is optimized perturbation (OPT) [3], which is
briefly recalled in the next section. Similar approaches, like screened per-
turbation theory (SPT) [4] in the thermal context, have been extended to
gauge theories, providing a resummation of hard thermal loop [5] pertur-
bation theory (HTLpt) [6]. Unfortunately, even when restricted to only
T -dependence, both SPT- and HTLpt-resummed thermodynamical quanti-
ties exhibit a residual renormalization scale dependence that unexpectedly
grows at higher orders [7,8], even dramatically at three-loop order. Typically,
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the three-loop order QCD HTLpt pressure shows a good agreement [8] with
lattice results down to low temperatures T ' 2Tc, for the ‘central’ scale value
µ = 2πT , but the agreement is lost as the renormalization scale is varied
even by a moderate amount. An alternative reconciling OPT with renormal-
ization group (RG) invariance has been proposed, dubbed renormalization
group optimized perturbation theory (RGOPT). It was originally developed
at vanishing temperatures [9, 10] and next, extended to finite temperature
for the scalar φ4 model, where is generically obtained the sought-after more
moderate residual scale dependence [11]. In the next section, we recall the
OPT (or similarly SPT) basic features, and our RG-compatible RGOPT
version in Sec. 3. It is illustrated in Sec. 4 for the nonlinear sigma model in
1+1 dimensions, which shares many features with QCD, such as asymptotic
freedom, the generation of a mass gap, and trace anomaly. Finally, some
preliminary results for (pure gauge) QCD are sketched in Sec. 5. A sum-
mary and outlook are given in Sec. 6. More complete analyses will be given
elsewhere for the NLSM [12] and QCD [13].

2. Optimized Perturbation Theory (OPT)

Consider the φ4 model Lagrangian for concreteness

L =
1

2
∂µφ∂

µφ− m2

2
φ2 − g

4!
φ4 . (1)

The key feature of OPT is to reorganize the above Lagrangian (1) by “adding
and subtracting” an arbitrary mass, treating one mass piece as an interaction.
To perform this systematically, it is convenient to introduce an extra expan-
sion parameter 0 ≤ δ ≤ 1, interpolating between Lfree and Lint, so that the
mass is traded for an arbitrary variational parameter m [3]. Starting from
any renormalized physical quantity P (m, g), it is equivalent to reexpand it
in powers of δ after substituting

m2 → m2 (1− δ)2a , g → δ g . (2)

Note the exponent a in (2), reflecting a possibly more general interpola-
tion prescription, but as we will see below, a is uniquely fixed from re-
quiring [10,11] consistent renormalization group (RG) invariance properties.
Applying (2) to a physical quantity P (m, g), expanded in δ at some chosen
order, and taking afterwards the limit δ → 1 to recover the massless theory,
leaves a remnant m-dependence at any finite δk-order. The arbitrary mass
parameter m is then fixed by an optimization (OPT) prescription

∂

∂ m
P (k)(m, g, δ = 1)|m≡m̄ ≡ 0 , (3)

thus determining a nontrivial optimized mass m̄(g) 6= 0.
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3. Renormalization group consistency of OPT (RGOPT)

Before applying the δ-expansion (2), a first crucial step is to start from a
(perturbatively) RG invariant physical quantity. However, this is generally
not the case for the pressure: for example, the MS-scheme renormalized
two-loop free energy (equivalently minus the pressure) of the scalar model
is [7]

(4π)2F0 = −m
4

8
(3+2L)− T

4

2
J0(x)+

g

128π2

[
(L+ 1)m2 − T 2J1(x)

]2
, (4)

where x = m/T , L ≡ ln(µ2/m2), µ the arbitrary renormalization scale, and

J0(x) =
16

3

∞∫
0

dt
t4√

t2 + x2

1

e
√
t2+x2 − 1

, J1(x) = − 1

2x
∂J0(x)/∂x . (5)

Now, applying the standard RG operator1

µ
d

dµ
= µ

∂

∂µ
+ β(g)

∂

∂g
+ γm(g)m

∂

∂m
(6)

to Eq. (4), leaves a remnant term already at lowest order, −m4/2 + O(g):
a general feature which simply reflects that the vacuum energy of a massive
theory has an anomalous dimension. Accordingly, perturbative RG invari-
ance can be restored order by order from an appropriate finite vacuum energy
subtraction term, F0(m, g)→ F0(m, g) + E0(m, g)

E0(m, g) = −m4

(
s0

g
+ s1 + s2g + · · ·

)
. (7)

For the scalar model, we find s0 = [2(b0 − 4γ0)]−1 = 8π2, s1 = −1 etc. [11].
We are now ready to perform the OPT transformation from (2). Note
that most previous OPT/SPT/HTLpt related approaches assumed a = 1/2
in (2), i.e. a linear δ-expansion. Also a well-known drawback is that Eq. (3)
generally gives multiple mass gap solutions at increasing orders, and some
being complex-valued. Thus, without insight on the nonperturbative be-
haviour, it can be difficult to select the right solution, and non-real solutions
are embarrassing. Our construction [10, 11] differs in two respects. First,
we combine OPT and RG properties, by requiring the (δ-modified) result to
satisfy, in addition to Eq. (3), the perturbative RG equation

µ
d

dµ

(
P (k)(m, g, δ = 1)

)
= 0 . (8)

1 Our normalization here is β(g) ≡ dg/d lnµ = b0g
2+b1g

3+· · ·, γm(g) = γ0g+γ1g
2+. . .
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Now, what appears overlooked in previous related approaches, is that after
performing (2), perturbative RG invariance is generally badly lost, so that
Eq. (8) gives a nontrivial additional constraint. In fact, RG invariance can
only be restored for a unique value of the exponent a, fully determined by
the universal (scheme-independent) first order RG coefficients

a = γ0/b0 . (9)

We stress that for a generic model at finite T , the above RGOPT construc-
tion has the following features: (i) an essentially unique solution of (3) at
successive order, with a nontrivial mass gap m̄(g) already at one-loop order.
(ii) The mass-gap and, therefore, the pressure are exactly scale-invariant by
construction at one-loop order. (iii) A residual scale dependence unavoid-
ably appears at higher orders, however much more moderate than in SPT
and HTLpt related approaches. These features will be next illustrated with
some new results for the nonlinear sigma model and QCD.

4. RGOPT of thermal nonlinear σ model (NLSM)

The O(N) NLSM Lagrangian in 1 + 1 dimensions describes interactions
of N − 1 pions, with a mass perturbatively introduced to cure infrared di-
vergences [14]. We are ultimately interested in the massless limit, where
the Goldstone bosons acquire nonperturbatively a mass gap, such that the
O(N) symmetry remains unbroken, in agreement with the Mermin–Wagner–
Coleman theorem [15]. Applying the RGOPT up to two-loop order with
NLSM b0, γ0 etc. values, Fig. 1 compares the one- and two-loop RGOPT
NLSM pressure with large-N (LN) and two-loop SPT ones. The one-loop
RGOPT pressure is exactly scale invariant, while the residual two-loop scale
dependence improvement is about a factor 3 as compared to SPT.
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Fig. 1. NLSM pressure for different approximations, from [12], for a typical choice
N = 4 and g(µ = M0) = 1 (shaded regions: scale-dependence πT < µ < 4πT ).
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Moreover, at two-loop order, RGOPT compares well [12] with NLSM
lattice results [16], and also gives a realistic trace anomaly, in contrast with
SPT or HTLpt, reflecting in two dimensions the breaking of conformal in-
variance.

5. Thermal (pure glue) QCD: hard thermal loop

In this section, we only sketch some preliminary results for thermal QCD
(pure gluon), see [13] for more details. The OPT procedure (2) operates on
the gauge-invariant nonlocal2 HTL effective Lagrangian [5]

LQCD(gauge)− m2

2
Tr

[
Gµα

〈
yαyβ

(y D)2

〉
y

Gµβ

]
, (10)

which describes a thermal gluon mass m2 ∼ αST
2, plus many more hard

thermal loop contributions modifying gluon propagator and vertices very
nontrivially. The HTLpt pressure has been calculated up to 3-loop α2

S
(NNLO) order [8], where reasonable agreement with lattice simulations down
to T ∼ 2–3Tc is found for some renormalization scale choice, but an issue
of HTLpt is the drastic increase of scale dependence at NNLO order.

Our main RGOPT improvement is the crucial RG invariance maintained
at all stages of calculations: first, before performing (2), it is perturbatively
restored by a subtraction in the pressure

PHTLpt → PHTLpt −m4

(
s0

αS
+ s1 + · · ·

)
,

reflecting its anomalous dimension. Second, we use our RG-compatible mod-
ification of the nonperturbative interpolation, taking (2) with a = γ0/b0,
where the gluon mass anomalous dimension γ0 is evaluated from its (avail-
able) counterterm. As expected, the one-loop RGOPT pressure is exactly
scale-invariant, similarly to the previous models. At 2-loop order, a moder-
ate scale dependence reappears, similar to the NLSM case, but with a factor
∼ 2–3 improvement with respect to 2-loop order HTLpt (see Fig. 2). On
general grounds, the RGOPT scale dependence should further improve at
3-loop order, therefore a drastic improvement is expected as compared to
3-loop HTLpt: because RGOPT at O(αkS) implies that m̄(µ) appears first at
O(αk+1

S ) for any m̄, and since m̄2 ∼ αST
2 and PRGOPT ' m̄4/αS + · · ·, the

leading µ-dependence should appear at O(αk+2
S ). However, to determine the

low T ∼ Tc genuine RGOPT pressure shape, one needs higher order terms
of O(m4αS), O(m4α2

S), which implies new calculations of 2- and 3-loop HTL
integrals.

2 In (10), Dµ = ∂µ − igAµ, yµ = (1, ŷ), ŷ2 = 1, and 〈· · ·〉 means angular averaging.
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Fig. 2. Relative scale variation of pure glue pressure for RGOPT versus HTLpt.

6. Summary and outlook

Our RG-compatible version of OPT, RGOPT, gives an efficient alterna-
tive to related SPT/HTLpt thermal variational approaches, by maintaining
or restoring RG invariance at all calculation stages. Therefore, the residual
scale dependence remains moderate and is expected on general grounds to
decrease at higher orders. Moreover, RGOPT appears to capture a more
‘nonperturbative’ behaviour already at two-loop order with, for instance,
a realistic trace anomaly (i.e. with a maximum) obtained in the NLSM
case [12]. Since our approach is generic, one expects to extend such varia-
tional methods to the full QCD thermodynamics, in particular for exploring
the phase diagram also at finite densities.
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