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1. Introduction

In this paper, we report on recent work [1], where a novel hydrodynamic
framework for particles with spin 1/2 was introduced. The renewed interest in
hydrodynamics of spinning particles is based on two facts: first, relativistic
hydrodynamics forms the basic framework that is used to describe space-
time evolution of matter created in relativistic heavy-ion collisions, studied
experimentally at RHIC and the LHC |2], second, recently, measurements of
particle polarization in heavy-ion collisions have become available [3]. Thus,
it is tempting to combine these two topics to explore polarization effects in
the context of hydrodynamic models (for a recent review of this and other
related issues see, for example, Ref. [4] and references therein).

* Presented by W. Florkowski at “Excited QCD 20177, Sintra, Lisbon, Portugal, May
7-13, 2017.
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2. Local equilibrium distribution functions

The main physics input for our approach is the definition of local equilib-
rium distribution functions for particles (plus signs) and antiparticles (minus
signs) given in [5]

Faep) = 5w @)X um), ) = 5w X 0w, (1)

Here, 7,5 = 1,2 are spin indices, u, and v, are bispinors, and X* are the
four-by-four matrices

X = exp [£E(x) — Bu(2)ph] M* (2)

where X
M* = exp [i%wuy(x)ﬂ“” . (3)

Here, we use the notation f* = w* /T and { = /T, with the temperature T,
chemical potential p, and the fluid four-velocity u* (u-u = 1). The quantity
wyy is the polarization tensor, while DHV is the spin operator expressed by
the Dirac gamma matrices, 2% = (i/4)[y*,~"].

It is convenient to express the polarization tensor w, in terms of the
four-vectors k* and w*

W = kyuy — kyuy, + ew,/g,yuﬁwv . (4)

We can assume that both k, and w,, are orthogonal to u* (k-u =w-u = 0),

hence

v 1 va
ky = wpu”, Wy = 5€uaf W u? . (5)

We also define the dual polarization tensor
5 o=1 aBf _ _ pvof L. 6
Oy = 5€u0a8W Wylly — Wyl + € alUg . (6)
It follows that %www"” =k-k—w-wand %(DWWW = 2k - w. Using the

constraint

k-w=0, (7)

we find the compact form
M* = cosh(¢) + —— 2L w SH (8)

where
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3. Basic physical observables

The knowledge of the equilibrium distribution functions (1) allows us
to compute the basic physical observables such as the charge and energy
density, pressure, and entropy density. For the charge current, we use the

definition of Refs. |5, 6]

3
N = [ St () — ()] = (10)

where “tr” denotes the trace over spinor indices and n is the charge density
n = 4 cosh(C) sinh(€) ng)(T) = 2 cosh(C) (ef - e—f) ney(T). (1)

Here, n()(T) = ((u - p))o is the number density of spinless, neutral Boltz-
mann particles, obtained using the thermal average

3
(- E/(Z:)pr(...)eﬁ-p’ (12)

where p? = E, = +/m? + p? is the particle energy.
In the next step, we calculate the energy-momentum tensor, again fol-
lowing Refs. [5, 6]

3
T — / Q(Q‘jr)p%pﬂpv [te(XT) + tr(X7)] = (¢ + P)ulu’ — Pgh . (13)

The energy density and pressure in (13) are given by the formulas
e = 4 cosh(() cosh(§) g(0)(T) (14)

and

P = 4 cosh(() cosh(§) Po)(T), (15)

respectively. In analogy with the particle density n () (7'), we define the aux-
iliary quantities &) (T) = ((u-p)?)o and Py (T) = —(1/3){[p- p — (u - p)*])o-
We note that the energy-momentum tensor (13) is symmetric and has the
structure characterizing perfect fluids.

For the entropy current, we use a straightforward generalization of the
Boltzmann expression

3
5= [ e X (X X (X))
(16)
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This leads to the entropy density which satisfies the equation

e+ P—pun—Ow
= T ,

s = u,S" (17)
where 2 = (T and
w = 4 sinh(() cosh(§) n) - (18)

The last equation suggests that {2 can be used as a thermodynamic vari-
able of the grand canonical potential, in addition to 7" and w. Taking the
pressure P to be a function of T,y and 2, P = P(T, u, {2), one finds

9P 9P P

§= — , n=— , W= — .
oT 102 ou T.0 o1 T

(19)

4. Hydrodynamic equations

Hydrodynamic equations are first-order differential equations for the La-
grange multipliers appearing in the local equilibrium distribution functions.
Since we use constraint (7) and introduce {2 to parametrize the contraction
wwwt”, ten independent functions of space and time are needed for a com-
plete description. These are chosen as: T'(z), u(z), £2(z), three independent
components of u*(x), and the four remaining independent components of
wh (z).

The conservation of energy and momentum implies that
0T =0. (20)

This equation can be split into two parts, one longitudinal and the other
transverse with respect to u*

dP
Oulle + Pyut] = w9,P = ——, (21)
du# o o
(e+ P)— = (¢"* — uM'u™)0.P. (22)
dr
Evaluating the derivative on the left-hand side of the first equation, one finds
T 0y (sut) + pOp(nu”) + 20, (wut) =0. (23)

The term in the middle of the left-hand side vanishes due to charge conser-
vation
Ou(nut) =0. 24)

Thus, in order to have conservation of entropy in our system, 0, (sut) = 0
(for the perfect-fluid description we are aiming at), we demand that

Op(wut) =0. (25)

—



Relativistic Hydrodynamics of Particles with Spin 1/2 1143

Equations (20), (24) and (25) form a closed system of six equations for
six unknowns: T'(z), p(z), 2(x) and three components of ut(x). Since
they do not determine the time evolution of the individual components of
the polarization tensor, we dub them the equations for the hydrodynamic
background.

5. Spin dynamics

Our approach is based on the conservation of the angular momentum
in the form of dy\JM = 0, where JM = LMW 4 SMH with LMW =
M TV — ¥ TH being the orbital angular momentum and SM* the spin ten-
sor. Since the energy-momentum tensor (13) is symmetric, the conservation
law 0y JM = 0 implies conservation of the spin tensor S [7]

INSMH =, (26)

For M we use the form discussed in [8]

d3p - wut
Apv A S | uv
S /2(%)3 v tr[(X X)¥ ] Tl (27)

Using the conservation law for the spin density and introducing the
rescaled polarization tensor w*” = wh /(2(), we find
dwH

T N~ =0. (28)
dr

Since WM is antisymmetric, Eq. (28) with the normalization condition
Oy WM =2 (29)

yields five independent equations. If condition (7) is fulfilled on the initial
hypersurface, it remains fulfilled at later times, provided Eq. (28) holds.
Hence, Eq. (28) used with (7) and (29) yields four additional equations that
are needed to determine the space-time evolution of a spinning fluid. In
Ref. [1], we have shown that this framework has a vortex-like solution that
corresponds to global equilibrium studied in Refs. [5,8].

6. Closing remarks

In this work, we have described a new hydrodynamic approach to rela-
tivistic perfect-fluid hydrodynamics of particles with spin 1/2. The system
of hydrodynamic equations follows directly from the conservation laws for
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charge, energy, momentum and angular momentum. An important ingredi-
ent of our approach is the form of the spin tensor defined by Eq. (27) that
allows for the construction of a consistent system of equations. We note that
form (27) differs from those used in [5] and [6], respectively.

This research was supported in part by the ExtreMe Matter Institute
EMMI at the GSI Helmholtzzentrum fiir Schwerionenforschung, Darmstadt,
Germany and by the National Science Centre, Poland (NCN) grant No. 2016/
23/B/ST2/00717.
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