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1. Introduction

In this paper, we report on recent work [1], where a novel hydrodynamic
framework for particles with spin 1/2 was introduced. The renewed interest in
hydrodynamics of spinning particles is based on two facts: first, relativistic
hydrodynamics forms the basic framework that is used to describe space-
time evolution of matter created in relativistic heavy-ion collisions, studied
experimentally at RHIC and the LHC [2], second, recently, measurements of
particle polarization in heavy-ion collisions have become available [3]. Thus,
it is tempting to combine these two topics to explore polarization effects in
the context of hydrodynamic models (for a recent review of this and other
related issues see, for example, Ref. [4] and references therein).

∗ Presented by W. Florkowski at “Excited QCD 2017”, Sintra, Lisbon, Portugal, May
7–13, 2017.
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2. Local equilibrium distribution functions

The main physics input for our approach is the definition of local equilib-
rium distribution functions for particles (plus signs) and antiparticles (minus
signs) given in [5]

f+rs(x, p) =
1

2m
ūr(p)X

+us(p) , f−rs(x, p) = − 1

2m
v̄s(p)X

−vr(p) . (1)

Here, r, s = 1, 2 are spin indices, ur and vs are bispinors, and X± are the
four-by-four matrices

X± = exp [±ξ(x)− βµ(x)pµ]M± , (2)

where
M± = exp

[
±1

2ωµν(x)Σ̂µν
]
. (3)

Here, we use the notation βµ = uµ/T and ξ = µ/T , with the temperature T ,
chemical potential µ, and the fluid four-velocity uµ (u ·u = 1). The quantity
ωµν is the polarization tensor, while Σ̂µν is the spin operator expressed by
the Dirac gamma matrices, Σ̂µν = (i/4)[γµ, γν ].

It is convenient to express the polarization tensor ωµν in terms of the
four-vectors kµ and ωµ

ωµν ≡ kµuν − kνuµ + εµνβγu
βωγ . (4)

We can assume that both kµ and ωµ are orthogonal to uµ (k ·u = ω ·u = 0),
hence

kµ = ωµνu
ν , ωµ = 1

2εµναβ ω
ναuβ . (5)

We also define the dual polarization tensor

ω̃µν ≡ 1
2εµναβω

αβ = ωµuν − ωνuµ + εµναβkαuβ . (6)

It follows that 1
2ωµνω

µν = k · k − ω · ω and 1
2 ω̃µνω

µν = 2k · ω. Using the
constraint

k · ω = 0 , (7)

we find the compact form

M± = cosh(ζ)± sinh(ζ)

2ζ
ωµνΣ̂

µν , (8)

where
ζ ≡ 1

2

√
k · k − ω · ω . (9)
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3. Basic physical observables

The knowledge of the equilibrium distribution functions (1) allows us
to compute the basic physical observables such as the charge and energy
density, pressure, and entropy density. For the charge current, we use the
definition of Refs. [5, 6]

Nµ =

∫
d3p

2(2π)3Ep
pµ
[
tr(X+)− tr(X−)

]
= nuµ , (10)

where “tr” denotes the trace over spinor indices and n is the charge density

n = 4 cosh(ζ) sinh(ξ)n(0)(T ) = 2 cosh(ζ)
(
eξ − e−ξ

)
n(0)(T ) . (11)

Here, n(0)(T ) = 〈(u · p)〉0 is the number density of spinless, neutral Boltz-
mann particles, obtained using the thermal average

〈· · ·〉0 ≡
∫

d3p

(2π)3Ep
(· · ·) e−β·p , (12)

where p0 = Ep =
√
m2 + p2 is the particle energy.

In the next step, we calculate the energy-momentum tensor, again fol-
lowing Refs. [5, 6]

Tµν =

∫
d3p

2(2π)3Ep
pµpν

[
tr(X+) + tr(X−)

]
= (ε+ P )uµuν − Pgµν . (13)

The energy density and pressure in (13) are given by the formulas

ε = 4 cosh(ζ) cosh(ξ) ε(0)(T ) (14)

and
P = 4 cosh(ζ) cosh(ξ)P(0)(T ) , (15)

respectively. In analogy with the particle density n(0)(T ), we define the aux-
iliary quantities ε(0)(T ) = 〈(u·p)2〉0 and P(0)(T ) = −(1/3)〈

[
p · p− (u · p)2

]
〉0.

We note that the energy-momentum tensor (13) is symmetric and has the
structure characterizing perfect fluids.

For the entropy current, we use a straightforward generalization of the
Boltzmann expression

Sµ = −
∫

d3p

2(2π)3Ep
pµ
(
tr
[
X+

(
lnX+ − 1

)]
+ tr

[
X− (lnX− − 1

)])
.

(16)
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This leads to the entropy density which satisfies the equation

s = uµS
µ =

ε+ P − µn−Ωw
T

, (17)

where Ω = ζ T and
w = 4 sinh(ζ) cosh(ξ)n(0) . (18)

The last equation suggests that Ω can be used as a thermodynamic vari-
able of the grand canonical potential, in addition to T and µ. Taking the
pressure P to be a function of T, µ and Ω, P = P (T, µ,Ω), one finds

s =
∂P

∂T

∣∣∣∣
µ,Ω

, n =
∂P

∂µ

∣∣∣∣
T,Ω

, w =
∂P

∂Ω

∣∣∣∣
T,µ

. (19)

4. Hydrodynamic equations

Hydrodynamic equations are first-order differential equations for the La-
grange multipliers appearing in the local equilibrium distribution functions.
Since we use constraint (7) and introduce Ω to parametrize the contraction
ωµνω

µν , ten independent functions of space and time are needed for a com-
plete description. These are chosen as: T (x), µ(x), Ω(x), three independent
components of uµ(x), and the four remaining independent components of
ωµν(x).

The conservation of energy and momentum implies that

∂µT
µν = 0 . (20)

This equation can be split into two parts, one longitudinal and the other
transverse with respect to uµ

∂µ[(ε+ P )uµ] = uµ∂µP ≡
dP

dτ
, (21)

(ε+ P )
duµ

dτ
= (gµα − uµuα)∂αP . (22)

Evaluating the derivative on the left-hand side of the first equation, one finds

T ∂µ(suµ) + µ∂µ(nuµ) +Ω ∂µ(wuµ) = 0 . (23)

The term in the middle of the left-hand side vanishes due to charge conser-
vation

∂µ(nuµ) = 0 . (24)

Thus, in order to have conservation of entropy in our system, ∂µ(suµ) = 0
(for the perfect-fluid description we are aiming at), we demand that

∂µ(wuµ) = 0 . (25)
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Equations (20), (24) and (25) form a closed system of six equations for
six unknowns: T (x), µ(x), Ω(x) and three components of uµ(x). Since
they do not determine the time evolution of the individual components of
the polarization tensor, we dub them the equations for the hydrodynamic
background.

5. Spin dynamics

Our approach is based on the conservation of the angular momentum
in the form of ∂λJλ,µν = 0, where Jλ,µν = Lλ,µν + Sλ,µν with Lλ,µν =
xµT νλ−xνTµλ being the orbital angular momentum and Sλ,µν the spin ten-
sor. Since the energy-momentum tensor (13) is symmetric, the conservation
law ∂λJ

λ,µν = 0 implies conservation of the spin tensor Sλ,µν [7]

∂λS
λ,µν = 0 . (26)

For Sλ,µν , we use the form discussed in [8]

Sλ,µν =

∫
d3p

2(2π)3Ep
pλ tr

[(
X+ −X−) Σ̂µν

]
=
wuλ

4ζ
ωµν . (27)

Using the conservation law for the spin density and introducing the
rescaled polarization tensor ω̄µν = ωµν/(2ζ), we find

uλ∂λ ω̄
µν =

dω̄µν

dτ
= 0 . (28)

Since ω̄µν is antisymmetric, Eq. (28) with the normalization condition

ω̄µν ω̄
µν = 2 (29)

yields five independent equations. If condition (7) is fulfilled on the initial
hypersurface, it remains fulfilled at later times, provided Eq. (28) holds.
Hence, Eq. (28) used with (7) and (29) yields four additional equations that
are needed to determine the space-time evolution of a spinning fluid. In
Ref. [1], we have shown that this framework has a vortex-like solution that
corresponds to global equilibrium studied in Refs. [5, 8].

6. Closing remarks

In this work, we have described a new hydrodynamic approach to rela-
tivistic perfect-fluid hydrodynamics of particles with spin 1/2. The system
of hydrodynamic equations follows directly from the conservation laws for
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charge, energy, momentum and angular momentum. An important ingredi-
ent of our approach is the form of the spin tensor defined by Eq. (27) that
allows for the construction of a consistent system of equations. We note that
form (27) differs from those used in [5] and [6], respectively.

This research was supported in part by the ExtreMe Matter Institute
EMMI at the GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt,
Germany and by the National Science Centre, Poland (NCN) grant No. 2016/
23/B/ST2/00717.
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