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Lattice QCD indicates a large amount of entropy associated with a
quark–antiquark (qq̄) pair near the deconfinement temperature. The en-
tropy shows a sharp peak near the transition temperature and increases
with the interquark distance. We use the gauge/gravity duality to repro-
duce these lattice results holographically. We consider a phenomenological
bottom–up Einstein–Maxwell-dilaton (EMD) gravity model and analyti-
cally construct the gravity solutions, whose dual boundary theory satisfies
the properties of confined/deconfined phases. We study the entropy of the
qq̄ pair and find that our holographic model qualitatively reproduces the
corresponding lattice results. We further provide holographic results for
the qq̄ entropy with chemical potential.
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1. Introduction

Lattice QCD data, summarized in Figs. 1 and 2, suggests a strong en-
tanglement between the heavy bound states and the rest of QCD plasma.
There are three main observations: (i) lattice data predicts a large amount
of entropy associated with a heavy qq̄ pair near the deconfinement transi-
tion temperature, (ii) away from the deconfinement temperature the entropy
decreases with temperature, and (iii) the entropy grows as the separation
between the quarks increases.

Since lattice results for the qq̄ entropy also indicate the breakdown of
the weak coupling approximation [1,2], it provides another avenue where the
ideas of gauge/gravity duality can be further applied and tested. During the
last two decades, the gauge/gravity duality has immersed as a standard tool
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Fig. 1. Two flavour lattice QCD result for the entropy of a qq̄ pair as a function
of quark–antiquark separation at temperature T ' 1.3Tc. The result is taken
from [3].

Fig. 2. Lattice QCD result for the entropy of a qq̄ pair as a function of temperature
T/Tc for large qq̄ separation. The result is taken from [3].

to study strongly coupled gauge theories and indeed using this duality, a lot
of new insights into the regime of strongly coupled QCD, which agrees qual-
itatively with lattice QCD, have been obtained both from “top–down” and
phenomenological “bottom–up” models. Our aim in this proceeding would
be to see whether this duality can provide new insights into the entropy of
the qq̄ pair as well.

2. Einstein–Maxwell-dilaton gravity

We start with the Einstein–Maxwell-dilaton action in five dimensions
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where G5 is the Newton constant in five dimensions, V (φ) is the potential of
the dilaton field, and f(φ) is a gauge kinetic function which represents the
coupling between dilaton and gauge field AM . To solve Einstein, Maxwell
and dilaton equations, we consider the following Ansätze:



Thermal Entropy of a Quark–Antiquark Pair from a Dynamical . . . 1147
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where we have assumed that the various fields depend only on the holo-
graphic coordinate z. Here, z = 0 corresponds to the asymptotic boundary
and L is the AdS length scale. Importantly, these equations can be solved
analytically in terms of a scale function A(z)
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Here, we have used the boundary condition that g(zh) = 0 at the horizon
and g(z) goes to 1 at the asymptotic boundary.

For A(z), we consider the following simple form:

A(z) = −ā z2 . (4)

We would like to emphasize that Eq. (3) is a solution of the Einstein–
Maxwell-dilaton system for any A(z), and Eq. (4) is just a particular form.
This expression is chosen to reproduce some of the lattice QCD results holo-
graphically. The parameter ā can be fixed by comparing with the lattice
estimate for the confinement–deconfinement phase transition temperature
at zero chemical potential. For example, our gravity background undergoes
a thermal-AdS/black hole phase transition which on the dual boundary side
corresponds to the confinement–deconfinement phase transition. Demand-
ing the critical temperature at zero chemical potential to be around 270 MeV
fixes the parameter ā = 0.145.
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3. Black hole thermodynamics

The thermodynamic results of the gravity solution are shown in Figs. 3
and 4. There are two branches in the (T, zh) plane. The branch with neg-
ative (positive) slope is stable (unstable). The unstable branch, however,
disappears for higher values of chemical potential. This defines a critical
chemical potential µcrit = 0.673 GeV. Moreover, the black hole branch does
not exist below a certain minimal temperature Tmin. This suggests a phase
transition from AdS black hole to thermal-AdS as the temperature decreases.
The phase transition can be observed from the free energy behaviour shown
in Fig. 4. We see that the free energy is positive for the unstable branch
and becomes negative after some critical temperature Tcrit along the sta-
ble branch, implying a first order Hawking/Page phase transition from AdS
black hole to thermal-AdS as the temperature decreases.
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Fig. 3. (Colour on-line) The Hawking temperature (T ) as a function of zh for
various values of the chemical potential µ. Here, red, green, blue, brown, cyan and
magenta (from top to bottom) curves correspond to µ = 0, 0.2, 0.4, 0.5, 0.6 and
0.673 [GeV], respectively.
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Fig. 4. (Colour on-line) Free energy F as a function of T for various values of the
chemical potential µ. Here, red, green, blue, brown and cyan (from right to left)
curves correspond to µ = 0, 0.2, 0.4, 0.5, 0.6 and 0.673 [GeV], respectively.
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4. Free energy of quark–antiquark pair

Our main aim of this section is to show that the thermal-AdS (AdS black
hole) phase corresponds to confinement (deconfinement) in the boundary
theory. Again, by confinement we simply mean a phase for which the expec-
tation value of the Wilson loop satisfies the area law, while the expectation
value of the Polyakov loop is zero. In order to show these properties, we
first need to calculate the free energy of the qq̄ pair. Via gauge/gravity
duality, the free energy F of the qq̄ pair can be calculated from the on-
shell fundamental string world sheet action. Generally, there are two world
sheet configurations that minimize the string action: an ∪-shaped connected
configuration which extends from the boundary (z = 0) into the bulk and
a disconnected configuration which consists of two lines separated by dis-
tance `, extending from the boundary to the end of the spacetime.

The free energy F of a qq̄ pair in the thermal-AdS background is shown
in Fig. 5. It turns out that the connected ∪-shape configuration is the only
relevant string solution here and this solution does not penetrate deep into
the bulk. Some kind of an “imaginary wall” in the bulk space appears near
z ' 1.185 GeV−1 which cannot be penetrated by the string world sheet.
Around this wall, ` increases rapidly. Importantly, the free energy of the qq̄
pair is found to have the Cornell expression, Fcon = −κ

` +σs`. This suggests
that the qq̄ pair is connected by the string and forms a confined state in
the dual boundary theory. Similarly, the Polyakov loop expectation value,
calculated from the single quark free energy, also vanishes. This suggests
that thermal-AdS phase corresponds to confined phase in the dual boundary
theory.
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Fig. 5. Fcon as a function of ` in the thermal-AdS background (in GeV).

On the other hand, the situation is completely different with the AdS
black hole background. The results are presented in Fig. 6, where the free
energy difference between the connected and disconnected string solutions is
shown. It turns out that with black hole background, there appears an `max
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above which connected solution does not exist and only the disconnected
solution remains. A phase transition from a connected to a disconnected
solution occurs as we increase the qq̄ separation length `. Importantly, for
higher separations, it is the disconnected solution which has the lower free
energy and this free energy is independent of `. It implies that the string
tension is zero and there is no linear law confinement for the boundary theory
dual to the AdS black hole phase. Moreover, one can easily show that the
Polyakov loop expectation value is now finite. It implies that the AdS black
hole phase corresponds to a deconfined phase in the dual boundary theory.
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Fig. 6. (Colour on-line) ∆F = Fcon − Fdiscon as a function of ` in the AdS black
hole background for various values of zh. Here, µ = 0 and red, green and blue
(from right to left) curves correspond to zh = 1.5, 1.0 and 0.5 [GeV], respectively.

5. Entropy of quark–antiquark pair

We now move on to examine the entropy S of the qq̄ pair in both phases.
The results are shown in Figs. 7 and 8. We find that our holographic model
qualitatively captures lattice QCD results for the qq̄ entropy. In particular,
we find a large entropy associated with qq̄ pair near the deconfinement tran-
sition temperature. One can also notice a sharp peak in the entropy near the
transition temperature, mimicking another important lattice result. Similar
results in the deconfined phase were found in [7]. Moreover, the higher tem-
perature asymptotics of the qq̄ entropy in our holographic model is identical
to those of [7]. In particular, for T & 2Tc, we find a tendency that TS
increases with T as noticed by lattice QCD well. Our study further pre-
dicts analogous asymptotic behaviour of TS in the presence of a chemical
potential too.

Another lattice prediction which our holographic model reproduces is the
increase in the entropy of the qq̄ pair as a function of distance between them,
see Fig. 8. We see that for each temperature, S increases with `. Moreover,
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Fig. 7. (Colour on-line) Entropy of the qq pair as a function of temperature in
the deconfined phase for various values of chemical potential µ. Here, solid/red,
doted/green, dashed/blue and dot-dashed/brown curves correspond to µ = 0, 0.2,
0.4 and 0.6 [GeV], respectively.
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Fig. 8. (Colour on-line) Entropy of the qq̄ pair as a function of distance in the de-
confined phase for various temperatures. Here µ = 0 and red, green and blue (from
bottom to top) curves correspond to T/Tcrit = 1.1, 1.2 and 1.3 [GeV], respectively.

for large `, S saturates to a constant value and becomes independent of it1.
This is due to the fact that the disconnected string configuration has lower
free energy at large separations, while it is independent of `. Therefore,
the corresponding entropy is also independent of `. We see that these re-
sults qualitatively match with the results predicted by lattice QCD (shown
in Fig. 1). However, as opposed to the latter, the entropy here does not
smoothly go to saturation. There is a discontinuity in the entropy at `crit
(denoted by dotted lines in Fig. 8). This discontinuity in the entropy arises
precisely due to a first order transition between the different string configu-
rations at `crit.

1 In order to make it more readable, the magnitude of S has been suppressed by a
factor of 2 in ` > `crit region of Fig. 8.
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6. Conclusions

We considered an Einstein–Maxwell-dilaton gravity model to study the
entropy of a qq̄ pair using the gauge/gravity correspondence. We first ex-
pressed the gravity solution in terms of a scale function A(z) and then con-
sidered a particular profile for it, which led to a thermal-AdS/black hole
phase transition on the gravity side. We showed that this phase transition
corresponds to the confinement/deconfinement phase transition in the dual
boundary theory. We then studied the free energy and entropy of such a
qq̄ pair and showed that our holographic model qualitatively reproduces the
known lattice QCD results. In particular, our holographic model correctly
reproduced: (i) a growth in the entropy of a qq̄ pair with interquark distance
and (ii) a sharp rise in the entropy near the deconfinement transition. We,
moreover, provided a holographic estimate for the qq̄ entropy with chemical
potential, which hopefully can be compared with lattice QCD in the near
future.

One major drawback of the current model is that it predicts zero qq̄
entropy in the confined phase. This is strictly due to the fact that the latter
phase is dual to thermal-AdS, which is independent of temperature. This
drawback can be rectified by computing 1/N corrections or by constructing
a black hole solution for the confined phase as well. Here, our ongoing
investigation suggests that by choosing a different form for A(z), it is possible
to construct a black hole solution on the gravity side whose dual boundary
theory closely resembles a confined phase. Using such a black hole solution,
one can study temperature-dependent properties of the confined phase as
well. This work is in preparation and will be reported elsewhere.
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