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A COLLISIONAL MODEL
FOR SCALAR MESONS BELOW 1 GeV∗
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A collisional model for hadron resonances appearing in hadron collisions
is proposed. The given approach leads to a simple explanation of the scalar
sector below 1 GeV with correct predictions for masses and dominant decay
modes.
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The scalar sector below and near 1 GeV is perhaps the most difficult for
traditional approaches in the hadron spectroscopy. The usual quark model
faces serious problems in explaining the existence and properties of light
scalar mesons. Despite the recent progress in description of these states by
dispersive methods [1,2], the scalar sector still remains puzzling. It is highly
desirable to have a simple and intuitively clear physical picture shedding
light on the existence, observable masses, and main decay modes of light
scalars. The purpose of this work is to propose a variant for such a picture.

The formation of hadron resonances is a complicated and largely mys-
terious quantum phenomenon. The resonance cannot be “visualized” as a
kind of circular motion of quarks in analogy with a rough “visualization” of
electron motion in atoms. The reason is that the hadron resonances do not
represent bound states — a typical resonance lifetime is so small that the
quarks usually have no time to make even one “circle” inside a space region
of typical linear size around 1 fm. We will make an attempt to construct an
alternative “visualization” based on a certain collisional picture describing
formation of some resonances.

First, we recall the famous Gell-Mann–Oakes–Renner relation for the
pion mass [3]

m2
π = −〈q̄q〉

f2
π

(mu +md) = Λ 2mq , (1)
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where we set mu = md
.
= mq and Λ

.
= − 〈q̄q〉

f2π
. We will use the standard

values for the quark condensate and masses of current quarks at the scale of
the pion mass from the QCD sum rules [4] and chiral perturbation theory [5],
〈q̄q〉 = −(250MeV)3, mu+md = 11 MeV. Together with fπ = 92.4 MeV (the
value of the weak pion decay constant in the normalization used in Eq. (1)),
relation (1) yields mπ = 140 MeV and Λ = 1830 MeV. This relation can be
generalized to the strange pseudoscalar mesons, with the constant Λ being
universal [5].

Consider a low-energy ππ scattering. Let us assume the existence of
situation when a pion collides as a whole with one of quarks of another
pion. This may happen when the first pion is faster, hence, has smaller
de Broglie wavelength, i.e. when one pion wave packet penetrates another
one1. The collision lasts a very short time ∆t which determines the lifetime
of the formed coherent state. During the time ∆t, the second quark (quark-
spectator) “feels” the first one as a particle with unchanged color charge
and spin (because pion is colorless and spinless) but with different proper
mass: mq → mq + mπ. Formally, doing this replacement for one of quarks
in Eq. (1), we obtain the estimate on the mass of this coherent state (let us
denote it σ beforehand)

m2
σ = Λmπ +m2

π (2)

that yields mσ ≈ 525 MeV. This state must have the quantum numbers of
scalar meson (a ππ state in S-wave), decay into two pions, and should be
an extremely short-living particle. The formation of such a coherent state is
favored by the Coulomb attraction between π+ and π− which leads to the
dominance of isosinglet channel. All these observations strongly suggest that
we must interpret this resonance as the f0(500) meson [1], widely known as
σ meson.

We may propose a quantum-mechanical interpretation for relation (2).
Consider a stationary state of some quantum system with energy E which
is described by the Schrödinger equation, H|ψ〉 = E|ψ〉. Consider now a
sudden perturbation of this system, e.g. by a very fast particle. A sudden
perturbation in Quantum Mechanics is a perturbation lasting so short time
∆t that the wave function ψ is not changed during ∆t (such a change always
requires a finite time). The perturbed system is described by the equation
H ′|ψ〉 = E′|ψ〉. But ψ is not an eigenfunction of the new Hamiltonian H ′
and the perturbed system becomes unstable. An important point for us
is that the form of ψ determines the functional dependence of energy E
from the parameters ai of the Hamiltonian H, E = E(ai). Since ψ is
unchanged during the time ∆t, this dependence remains the same after
the perturbation. It means that if H ′ is determined by a set of perturbed

1 A picture of this process depends on a reference frame.
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parameters a′i, then E′ = E(a′i). Returning to the ππ scattering, one of
pions can be considered as a stationary system in which mq plays the role
of a parameter determining its energy mπ. A collision causes a sudden
perturbation that changes the parameter, mq → mq +mπ, for a short time
∆t. This change must be substituted to Eq. (1) (for one of quarks) to obtain
the energy (2) of unstable state σ.

It should be remarked that the product Λmπ in Eq. (2) is not renormin-
variant and Λ should be taken at the scale ofmπ. If we replace pion in Eq. (2)
by some other particle, we should take Λ at the scale of that particle.

Relation (2) suggests that the chiral limit mπ → 0 entails mσ → 0.
The available phase space and decay amplitude, however, are not changed
drastically, i.e., in the chiral limit, σ remains a very broad resonance. The
obtained scalar state is thus different from the sigma meson of linear sigma
model or Nambu–Jona-Lasinio model where it is not massless in the chiral
limit. One should take into account that the large-Nc limit is inherent for
such models as the first approximation, while for analysis of very broad
resonances this limit is hardly appropriate [2].

The recent lattice simulation of Ref. [6] reported an effect of evolving
σ meson into a stable bound state lying below the ππ threshold as mπ

is increased. This observation follows directly from the mass relation (2):
Imposing mσ > 2mπ, we obtain mπ 6 Λ/3. This restriction is nontrivial as
Λ depends on the mass scale. If we normalize Λ to the numerical results of
Ref. [6], mσ = 758 MeV when mπ = 391 MeV, we get Λ = 1078 MeV that
gives the estimate mπ 6 359 MeV. This restriction agrees with the lattice
results of Ref. [6]: σ represents a bound state at mπ = 391 MeV and a broad
resonance at mπ = 236 MeV.

A calculation of total decay width in our approach is an open problem.
The resonance width is a measure of the mass uncertainty. Within our
framework, this uncertainty can appear from the uncertainty of Λ, i.e. of
the quark condensate 〈q̄q〉. Perhaps a definite value of 〈q̄q〉 exists inside the
quark bound states only. In the space region of hadron collisions, however,
a “stabilization” of 〈q̄q〉 around this value may require a finite time and
this causes a large mass uncertainty typical for resonances. For calculation
of strong decay width, one then needs a microscopic dynamical picture of
QCD vacuum which is unknown.

Let us define now a general notion of collisional resonance. Consider a
scattering of hadrons A and B where the latter has a smaller de Broglie
wavelength. Then, by assumption, B can excite one of quarks inside A in
the collisional way. The formed coherent state will be denoted as AB (means
“B inside A”). The σ meson represents the ππ collisional resonance in this
notation. Adding now the K and η mesons, we can construct other scalar
collisional states which can be formed, e.g., in the Kπ scattering.
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Consider the state πK . Making the replacement mq → mq +mK for one
of quarks in Eq. (1), we obtain its mass mπK ≈ 970 MeV. As in the case
of σ, the expected isospin of πK is zero. Its natural decay mode would be
πK → Kπ but such a decay is forbidden by the isospin conservation if πK
represents a genuine resonance. πK should be then relatively narrow and,
as its mass lies slightly below the KK threshold, its dominant decay mode
is expected to be πK → ππ. The scalar resonance f0(980) meets all these
expectations [1].

Let us include now the η meson. We predict the following characteristics
of πη resonance: mπη ≈ 1010 MeV, Iπη = 1 (it inherits Iπ), the dominant
decay mode πη → ηπ and it should be broader than πK because this mode is
not forbidden. The scalar resonance a0(980) satisfies these predictions [1].

Consider a hypothetical Kπ collisional resonance. The formation of the
coherent state Kπ is much harder than πK because π has larger de Broglie
wavelength, i.e. the pion wave packet is larger then the kaon one. This is
also true for the measured mean sizes, 〈rπ〉 > 〈rK〉 [1]. But one might assume
the existence of non-zero probability for Kπ due to some quantum effects.
The Coulomb attraction would favor then the K+

π− or K−
π+ channel, the K±

π0

and K0
π± are much less plausible. In any case, the mass of Kπ would be

given by
m2
Kπ

= Λ(mπ +mq +ms) = Λmπ +m2
K (3)

resulting in mKπ ≈ 710 MeV. Here, ms ≈ 130 MeV is the mass of the strange
quark below 1 GeV. It is tempting to interpret Kπ as the unconfirmed scalar
resonance K∗0 (800) called also k meson [1]. The Particle Data reports the
following mass for this elusive resonance: 682± 29 MeV [1]. Comparison of
Eq. (3) with Eq. (2) shows that, as expected, Kπ would be a partner of σ
in which one of u or d quarks is substituted by the s quark. The observed
isospin Ik = 1

2 , however, contradicts the favorable isospin zero predicted by
the assumed mechanism of Kπ formation. We see thus that the existence of
k meson, if confirmed, is not in conflict with our general principle for colli-
sional resonances and one should look for a correct formation mechanism.

We propose the following explanation. Let us take a closer look at the
production of k meson. The main source of information on k are decays of
J/ψ meson into kaons and pions. The decays of vector charmonia are always
accompanied by an abundant photon background. In all this “mixture”, one
can have situations when photons produce π0 meson inside a kaon. The
formed coherent state would then inherit the kaon isospin, i.e. would give
rise to the scalar partners of the pseudoscalar K+, K−, K0, and K̄0 mesons,
with the mass being described by relation (3).
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Our approach predicts other collisional scalar resonances as well: Kη with
mass about 1120 MeV, ηη with mass about 1150 MeV, almost unfeasible ηπ
having mass near 760 MeV, and a formation mechanism similar to that of
k meson, and resonances with η′ like the πη′ state of mass about 1330 MeV.
It is likely very hard to detect these resonances in the ππ, Kπ and KK
scattering (in experiments of direct ηπ and ηK scattering, this would be
easier) but they may contribute to the strong background emerging in these
reactions.

Within the framework of our collisional interpretation, the scalar res-
onances below and slightly above 1 GeV represent thus two-meson states.
In terms of the quark degrees of freedom, they are tetraquarks, as is also
suggested by many other models and observations [2].

It should be noted that the collisional interpretation described above
can be considered not only for the light scalar mesons but also for some
other hadrons. For instance, imagine that a ρ meson was formed “inside”
a pion and excited one of pion quarks in the collisional way. The coherent
state πρ is then formed. According to our prescription (i.e., the replacement
mq → mq +mρ for one of quarks in Eq. (1)), the mass of this state is given
by the relation

m2
πρ = Λmρ +m2

π , (4)

where Λ should be taken at the scale mρ. For making estimates in the first
approximation, we will consider Λ as a universal constant and set as before
Λ = 1830 MeV. We obtain mρ ≈ 1190 MeV. As in the σ case, the formation
of the coherent state πρ should be favored by the Coulomb attraction, i.e.
the favored channel is π+

ρ− or π−
ρ+

that entails zero isospin. The PC-parities
are (PC) = (−+)(−−) = (+−). The obtained coherent state seems to
be nothing but the resonance h1(1170) [1]. A natural consequence of πρ
structure of h1 is the absolute dominance of the decay mode h1 → ρπ [1].
The isotriplet partner of h1(1170) — the b1(1230) meson — represents the
collisional resonance πω that determines its isospin 1 (it inherits the pion
isospin) and dominant decay b1 → ωπ [1]. b1 is expected to be heavier than
h1 because mω > mρ and is narrower than h1 because Γω < Γρ. These
expectations agree with the experimental data [1], at least qualitatively.

In summary, we have proposed a novel interpretation for the scalar sec-
tor below 1 GeV which allows to predict the masses and dominant decay
modes of the light scalar resonances. It is based on a simple collisional
interpretation of the resonance formation. Our approach can be extended
and applied to some other hadrons. For instance, the h1(1170) meson can
be understood as the πρ collisional resonance. It seems that many highly
excited N and ∆ baryons can be described as collisional excitations of the
kind MB, where M is a meson (typically the π meson and resonances which
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are abundantly produced in reactions with π, like ρ (ω) and fJ mesons) and
B is a baryon (typically the proton and ∆(1232)). A further development
of our observations could be an interesting subject for a future work.
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