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A system of equations of anisotropic hydrodynamics that describes a
mixture of quark and gluon fluids is studied. The equations are based on
the zeroth, first, and second moments of the RTA kinetic equations. Tests
of this formulation are performed by comparing the results of anisotropic
hydorodynamics with the exact solutions of the Boltzmann equations for a
mixture of fluids in the Bjorken flow limit. One finds a very good agreement
between the hydrodynamic and kinetic theory results.
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1. Introduction

Relativistic viscous hydrodynamics has been used as a fundamental tool
to understand the evolution of matter produced in heavy-ion experiments
at RHIC and the LHC [1–7]. Despite the success of traditional viscous
hydrodynamics in reproducing collective behavior of matter, there are still
theoretical shortcomings that may question the validity of such an approach
in heavy-ion experiments conditions. Large flow gradients and fast longi-
tudinal expansion produce very large pressure corrections, in contrast to
the founding hydrodynamic hypotheses of small deviations from the local
equilibrium and perturbative treatment of viscous corrections. One way to
address this problem is anisotropic hydrodynamics [8–11].

Most of theoretical investigations on relativistic hydrodynamics start
with a kinetic theory and this is also the case for studies of mixtures [12–15].
However, a very good agreement of anisotropic hydrodynamics with the
exact solutions of the Boltzmann equations, found for simple fluids, has not
been confirmed in early works on mixtures [16, 17]. This suggests using a
more general approach than that presented in [16, 17], which is reported in
this paper [18].
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2. Kinetic equations

We start our analysis with the kinetic equations for quarks, antiquarks
and gluons written in the relaxation time approximation (RTA) [19–21]

pµ∂µfi(x, p) = −pµUµ
fi(x, p)− fi,eq(x, p)

τeq
, (1)

where i corresponds to Q+, Q− or G, fi is phase-space distribution function,
and τeq is the relaxation time.

The quark and gluon distribution functions are assumed to have a generic
structure [22]

fQ±(x, p) = exp

(
±λ−

√
(p · U)2 + ξq(p · Z)2

Λq

)
, (2)

fG(x, p) = exp

(
−
√
(p · U)2 + ξg(p · Z)2

Λg

)
, (3)

where Λq and Λg define the transverse momentum scale, λ is the non-
equilibrium baryon chemical potential of quarks, while ξq and ξg are the
anisotropy parameters. Moreover, Uµ = (t, 0, 0, z)/τ and Zµ = (z, 0, 0, t)/τ ,
where τ =

√
t2 − z2 is the longitudinal proper time.

In the local equilibrium, the two anisotropy parameters vanish, Λq and
Λg become equal to T , and λ becomes µ, namely

fQ±,eq(x, p) = exp

(
±µ− p · U

T

)
, fG,eq(x, p) = exp

(
−p · U

T

)
. (4)

The equilibrium distribution functions are used to define the RTA collision
terms in (1). In this case, µ and T should be treated as the effective baryon
chemical potential and effective temperature that are determined by the
appropriate Landau matching conditions. For simplicity, we assume here
the classical Boltzmann statistics.

3. Moments of the kinetic equations

In this section, we introduce equations of anisotropic hydrodynamics.
This is done by using moments of the kinetic equations.

3.1. Zeroth moments of the kinetic equations

Integrating Eq. (1) over three-momentum and including the internal de-
grees of freedom, we obtain the three scalar equations

∂µ(niU
µ) =

ni,eq − ni
τeq

, (5)
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where we have introduced the non-equilibrium and equilibrium particle den-
sities, see Ref. [18]. Instead of using Eq. (5), we use the difference of the
equations for quarks and antiquarks appearing in (5). Dividing it by a
factor 3 gives the constraint on the baryon number density. Using baryon
number conservation, we have found λq/Λq and µ/T defined by the functions

D (τ, Λq, ξq) =

(
3π2b0τ0

√
1 + ξq

2gqτΛ3
q

)
, κq (T,Λq, ξq) =

T 3
√
1 + ξq

Λ3
q

. (6)

Using this notation, we write first equation of anisotropic hydrodynamics

d

dτ

(
α

√
1 +D2Λ3

q√
1 + ξq

+ (1− α)
r̃Λ3

g√
1 + ξg

)

+

(
1

τ
+

1

τeq

)(
α

√
1 +D2Λ3

q√
1 + ξq

+ (1− α)
r̃Λ3

g√
1 + ξg

)

=
T 3

τeq

(
α
√

1 +D2/κ2q + (1− α)r̃
)
, (7)

where r̃ = 2/3 is the ratio of the quark and gluon internal degrees of freedom.
The parameter α should be taken from the range 0 ≤ α ≤ 1, see Ref. [18].

3.2. First moments of the kinetic equations

The energy-momentum conservation law for the system of partons has
the form of ∂µTµν = 0. The Landau matching condition for the energy-
momentum conservation requires that the energy determined from the non-
equilibrium distribution functions is the same as the energy obtained with
the equilibrium distribution functions ε = εq + εg = εeq = εq,eq + εg,eq. This
leads directly to the constraint on the effective temperature T ,

T 4 =
Λ4
q

√
1 +D2R(ξq) + Λ4

g r̃R(ξg)√
1 +D2/κ2q + r̃

, (8)

with function R(ξ) defined in [5]. In the (0+1)D case considered here, the
energy and momentum conservation takes the form of

dε

dτ
= −ε+ PL

τ
, (9)

where PL is the sum of the longitudinal pressures for quarks and gluons.
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This leads directly to the formula

d

dτ

[
Λ4
q

√
1 +D2R(ξq) + r̃Λ4

gR(ξg)
]

=
2

τ

[
Λ4
q

√
1 +D2 (1 + ξq)R′(ξq) + r̃Λ4

g(1 + ξg)R′(ξg)
]
, (10)

with RL defined in [5].

3.3. Second moments of the kinetic equations

Second moment of the Boltzmann equation was studied in detail in
Ref. [8]. In our one-dimensional case, only one of three equations selected
as the basis for the momentum anisotropy is independent. It may be taken
as

d

dτ
lnΘX −

d

dτ
lnΘZ −

2

τ
=
Θeq

τeq

[
1

ΘX
− 1

ΘZ

]
. (11)

Following the method of Ref. [9], one can derive the formulas for Θ functions
for quarks and gluons, and close the system of anisotropic hydrodynamics
equations with the following equations:

d

dτ
ln

(
Λ5
q

(1 + ξq)1/2

√
1 +D2

)
− d

dτ
ln

(
Λ5
q

(1 + ξq)3/2

√
1 +D2

)
− 2

τ

=
T 5

τeqΛ5
q

ξq(1 + ξq)
1/2

√
1 +D2/κ2q
√
1 +D2

,

and

d

dτ
ln

(
Λ5
g

(1 + ξg)1/2

)
− d

dτ
ln

(
Λ5
g

(1 + ξg)3/2

)
− 2

τ
=

T 5

τeqΛ5
g

ξg(1+ξg)
1/2 . (12)

4. Results

Our numerical results presented in this section include two types of initial
conditions. Figures 1 (a) and 1 (c) correspond to the oblate quark and gluon
distribution functions (where the two anisotropy parameters ξq and ξg are
positive and the transverse pressure is larger then the longitudinal one),
while Figs. 1 (b) and 1 (d) present two initially prolate distribution functions
(ξq and ξg parameters are negative and transverse pressure is smaller then
longitudinal one).
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Fig. 1. (Colour on-line) Comparison of the anisotropic hydrodynamics and kinetic-
theory results for the initial oblate–oblate (a)–(c) and prolate–prolate (b)–(d) con-
figurations. In these calculations, parameter α = 1.

Expansion considered in this paper starts at the proper time τ0=0.1 fm/c
and is continued till τ = 10 fm/c. The relaxation time is constant, τeq =
0.25 fm/c. The initial transverse-momentum parameters Λi(τ0) for quarks
and gluons have been set equal to 1 GeV.

Figure 1 presents a comparison between numerical results obtained from
the kinetic theory (solid black lines) and anisotropic hydrodynamics (long-
dashed grey/red lines). Exact solutions of the Boltzmann equation for
(0+1)D systems were constructed earlier in Ref. [17]. The results presented
here include the ratios of the total transverse pressure to the total energy
density, PT/ε, and of the total longitudinal pressure to transverse pressure,
PL/PT.

We have found a good agreement between kinetic theory and anisotropic
hydrodynamics. Our results agree with the expectation that the ratio PT/ε
should be equal to 1/3 in thermodynamic equilibrium. Similarly, the trans-
verse and longitudinal pressures are almost equal for the late time of the
evolution.
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5. Summary

Using the zeroth, first, and the second moments of the RTA kinetic
equations, we closed the set of equations for anisotropic hydrodynamics for
a mixture of quark and gluon fluids. In a contrast to previous studies,
based only on the zeroth and first moments, a very good agreement between
kinetic theory and anisotropic hydrodynamics for initially oblate–oblate and
prolate–prolate systems has been found.

I would like to thank Wojciech Florkowski and Radosław Ryblewski for
useful and clarifying discussions.

REFERENCES

[1] W. Florkowski, Phenomenology of Ultra-Relativistic Heavy-Ion Collisions,
Singapore: World Scientific, Singapore 2010, p. 416.

[2] U. Heinz, R. Snellings, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).
[3] B. Betz, D. Henkel, D.H. Rischke, Prog. Part. Nucl. Phys. 62, 556 (2009).
[4] G.S. Denicol, T. Koide, D.H. Rischke, Phys. Rev. Lett. 105, 162501 (2010).
[5] M. Martinez, M. Strickland, Nucl. Phys. A 848, 183 (2010).
[6] W. Florkowski, R. Ryblewski, Phys. Rev. C 83, 034907 (2011).
[7] M. Strickland, Acta Phys. Pol. B 45, 2355 (2014).
[8] L. Tinti, W. Florkowski, Phys. Rev. C 89, 034907 (2014).
[9] W. Florkowski, R. Ryblewski, M. Strickland, L. Tinti, Phys. Rev. C 89,

054909 (2014).
[10] M. Nopoush et al., Phys. Rev. C 92, 044912 (2015).
[11] R. Ryblewski, W. Florkowski, Phys. Rev. C 82, 024903 (2010).
[12] W. Florkowski, R. Ryblewski, M. Strickland, Phys. Rev. C 88, 024903

(2013).
[13] W. Florkowski, E. Maksymiuk, R. Ryblewski, M. Strickland, Phys. Rev. C

89, 054908 (2014).
[14] W. Florkowski et al., Phys. Rev. C 91, 054907 (2015).
[15] G.S. Denicol et al., Phys. Rev. Lett. 113, 202301 (2014).
[16] W. Florkowski, R. Maj, R. Ryblewski, M. Strickland, Phys. Rev. C 87,

034914 (2013).
[17] W. Florkowski, O. Madetko, Acta Phys. Pol. B 45, 1103 (2014).
[18] W. Florkowski, E. Maksymiuk, R. Ryblewski, L. Tinti, Phys. Rev. C 92,

054912 (2015).
[19] P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954).
[20] J.L. Anderson, H.R. Witting, Physica 74, 466 (1974); 74, 489 (1974).
[21] C. Cercignani, G.M. Kremer, The Relativistic Boltzmann Equation: Theory

and Applications, Boston; Basel; Berlin, Birkhäuser, 2002.
[22] P. Romatschke, M. Strickland, Phys. Rev. D 68, 036004 (2003).

http://dx.doi.org/10.1146/annurev-nucl-102212-170540
http://dx.doi.org/10.1016/j.ppnp.2008.12.018
http://dx.doi.org/10.1103/PhysRevLett.105.162501
http://dx.doi.org/10.1016/j.nuclphysa.2010.08.011
http://dx.doi.org/10.1103/PhysRevC.83.034907
http://dx.doi.org/10.5506/APhysPolB.45.2355
http://dx.doi.org/10.1103/PhysRevC.89.034907
http://dx.doi.org/10.1103/PhysRevC.89.054909
http://dx.doi.org/10.1103/PhysRevC.89.054909
http://dx.doi.org/10.1103/PhysRevC.92.044912
http://dx.doi.org/10.1103/PhysRevC.82.024903
http://dx.doi.org/10.1103/PhysRevC.88.024903
http://dx.doi.org/10.1103/PhysRevC.88.024903
http://dx.doi.org/10.1103/PhysRevC.89.054908
http://dx.doi.org/10.1103/PhysRevC.89.054908
http://dx.doi.org/10.1103/PhysRevC.91.054907
http://dx.doi.org/10.1103/PhysRevLett.113.202301
http://dx.doi.org/10.1103/PhysRevC.87.034914
http://dx.doi.org/10.1103/PhysRevC.87.034914
http://dx.doi.org/10.5506/APhysPolB.45.1103
http://dx.doi.org/10.1103/PhysRevC.92.054912
http://dx.doi.org/10.1103/PhysRevC.92.054912
http://dx.doi.org/10.1103/PhysRev.94.511
http://dx.doi.org/10.1016/0031-8914(74)90355-3
http://dx.doi.org/10.1016/0031-8914(74)90356-5
http://dx.doi.org/10.1103/PhysRevD.68.036004

	1 Introduction
	2 Kinetic equations
	3 Moments of the kinetic equations
	3.1 Zeroth moments of the kinetic equations
	3.2 First moments of the kinetic equations
	3.3 Second moments of the kinetic equations

	4 Results
	5 Summary

