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MAGNETIZED QCD PHASE DIAGRAM∗
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Using the (2+1)-flavor Nambu–Jona-Lasinio (NJL) model with the
Polyakov loop, we determine the structure of the QCD phase diagram in an
external magnetic field. Beyond the usual NJL model with constant cou-
plings, we also consider a variant with a magnetic field-dependent scalar
coupling, which reproduces the Inverse Magnetic Catalysis (IMC) at zero
chemical potential. We conclude that the IMC affects the location of the
Critical End Point, and found indications that, for high enough magnetic
fields, the chiral phase transition at zero chemical potential might change
from an analytic to a first-order phase transition.

DOI:10.5506/APhysPolBSupp.10.1197

1. Introduction

The properties of hadronic matter in a magnetized environment is at-
tracting the attention of the physics community. The effect of an external
magnetic field on the chiral and deconfinement transitions is an active field of
research with possible relevance in multiple physical systems. From heavy-
ion collisions at very high energies to the early stages of the Universe and
astrophysical objects like magnetized neutron stars, the magnetic field may
play an important role.

The catalyzing effect of an external magnetic field on dynamical chi-
ral symmetry breaking, known as Magnetic Catalysis (MC) effect, is well-
understood [1]. However, Lattice QCD (LQCD) studies show an additional
effect [2–4], the Inverse Magnetic Catalysis (IMC): instead of catalyzing,
the magnetic field weakens the dynamical chiral symmetry breaking in the
crossover transition region. The chiral pseudo-critical transition tempera-
ture turns out to be a decreasing function of the magnetic field strength.

Different theoretical approaches have been applied in studying the mag-
netized QCD phase diagram, and specifically the IMC effect. Several low-
energy effective models, including the Nambu–Jona-Lasinio (NJL)-type
models, have been used to investigate the impact of external magnetic fields
on quark matter (for a recent review, see [5]).
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2. Model

We perform our calculations in the framework of the Polyakov–Nambu–
Jona-Lasinio (PNJL) model. The Lagrangian in the presence of an external
magnetic field is given by

L = q̄ [iγµD
µ − m̂f ] q +Gs

8∑
a=0

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]
− 1

4FµνF
µν

−K {det [q̄ (1 + γ5) q] + det [q̄ (1− γ5) q]}+ U
(
Φ, Φ̄;T

)
,

where q = (u, d, s)T represents a quark field with three flavors, m̂f =
diagf (mu,md,ms) is the corresponding (current) mass matrix, and Fµν =

∂µA
EM
ν − ∂νAEM

µ is the (electro)magnetic tensor. The covariant derivative
Dµ = ∂µ − iqfAµEM − iAµ couples the quarks to both the magnetic field B,
via AµEM, and to the effective gluon field, via Aµ(x) = gAµa(x)λa2 , where
Aµa is the SUc(3) gauge field. The qf represents the quark electric charge
(qd = qs = −qu/2 = −e/3). We consider a static and constant magnetic
field in the z direction, AEM

µ = δµ2x1B. We employ the logarithmic effective
potential U

(
Φ, Φ̄;T

)
[6] fitted to reproduce lattice calculations.

We use a sharp cutoff (Λ) in three-momentum space as a model regu-
larization procedure. The parameters of the model are [7]: Λ = 602.3 MeV,
mu = md = 5.5 MeV, ms = 140.7 MeV, G0

sΛ
2 = 1.835 and KΛ5 = 12.36.

We analyze two model variants with distinct scalar interaction coupling:
a constant coupling Gs = G0

s and a magnetic field-dependent coupling
Gs = Gs(eB) [8]. In the latter, the magnetic field dependence is deter-
mined phenomenologically by reproducing the decrease ratio of the chiral
pseudo-critical temperature obtained in LQCD calculations [2]. Its func-
tional dependence is Gs(ζ) = G0

s

(
1+a ζ2+b ζ3

1+c ζ2+d ζ4

)
, where ζ = eB/Λ2

QCD (with
ΛQCD = 300 MeV). The parameters are a = 0.0108805, b = −1.0133×10−4,
c = 0.02228, and d = 1.84558× 10−4 [8].

3. Results (zero chemical potential)

Let us first compare both models at zero chemical potential. The up-
quark condensate (all quarks show similar results), normalized by its vacuum
value, and the Polyakov loop value are presented in Fig. 1. The presence of
the IMC effect in theGs(eB) model is clearly seen in Fig. 1 (top, right panel),
by the suppression effect of the magnetic field on the quark condensate
around the transition temperature region. Furthermore, the Gs(eB) model
still leads to Magnetic Catalysis at low and high temperatures: the magnetic
field enhances the quark condensate away from the transition temperature
region, i.e., at low and high temperatures. The chiral pseudo-critical tran-
sition temperature, defined as the inflection point of the quark condensate,



Magnetized QCD Phase Diagram 1199

Fig. 1. Vacuum normalized u-quark condensate (top) and Polyakov loop value
(bottom) for G0

s (left) and Gs(eB) (right).

decreases for Gs(eB) and increases for G0
s. The Gs(eB) makes possible

not only the decreasing transition temperature, but also preserves the ana-
lytic nature of the chiral transition, in accordance with LQCD results. The
Gs(eB) dependence also affects the Polyakov loop value (bottom panel).
A decreasing pseudo-critical temperature for the deconfinement transition
with increasing magnetic field is obtained for Gs(eB), contrasting with the
increasing pseudo-critical temperature for G0

s. The Gs(eB) dependence in-
duces a reduction of the Polyakov loop value in the transition temperature
region (also seen in LQCD results [4]).

4. Results (finite chemical potential)

Now, by introducing a finite chemical potential, we analyze the impact
of the Gs(eB) on the entire phase diagram. The results are displayed in
Figs. 2, 3, and 4, where the respective quantities are presented for two
magnetic field intensities (0.2 GeV2 and 0.6 GeV2) within both models. From
Fig. 2, we see that the (partial) chiral restoration is accomplished via an
analytic transition (crossover) at low chemical potentials, and through a
first-order phase transition at higher chemical potentials. The region on
which the chiral phase is broken (black/blue region) shrinks as the magnetic
field increases for the Gs(eB) model, and the opposite occurs for G0

s. Similar
plots are shown in Fig. 3, but now for the strange quark. The general
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Fig. 2. (Color online) Up-quark condensate (normalized by its vacuum value) with
G0

s (top) and Gs(eB) (bottom) for eB = 0.2 GeV2 (left) and eB = 0.6 GeV2 (right).
The color scale represents the magnitude of the vacuum normalized condensate.

Fig. 3. Strange-quark condensate (normalized by its vacuum value) with G0
s (top)

and Gs(eB) (bottom) for eB = 0.2 GeV2 (left) and eB = 0.6 GeV2 (right). The
color scale represents the magnitude of the vacuum normalized condensate.
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Fig. 4. Polyakov loop value Φ with G0
s (top) and Gs(eB) (bottom) for eB =

0.2 GeV2 (left) and eB = 0.6 GeV2 (right). The color scale represents the Polyakov
loop magnitude.

pattern shows a smoothly decrease of the strange quark condensate over
the whole phase diagram, though some discontinuities appear, which are
induced by the first-order phase transition of the light quarks. An interesting
result is seen for the Gs(eB) model at eB = 0.6 GeV2 (bottom right panel
of Fig. 3): a first-order phase transition shows up for the strange quark
at low temperatures which ends up in a Critical End Point (CEP) at a
temperature around 50 MeV. Finally, we represent the Polyakov value in
Fig. 4. The general pattern is maintained within both models. We see
that the transition from confined quark matter (Φ ≈ 0) to deconfinement
quark matter (Φ ≈ 1) is accomplished via an analytic transition, reflected in
the continuous increase of the Polyakov loop value (there is a discontinuity
induced by the chiral first-order phase transition on which the variation of
the Polyakov loop value is small). Because the chiral broken phase region
gets smaller with an increasing magnetic field, the region on which the chiral
phase is (approximately) restored but still confined (at low temperatures and
high chemical potentials) enlarges with an increasing magnetic field strength.
The opposite occurs for the model with a constant coupling.

As a final step, we focus on the CEP’s location of the chiral transition
as a function of the magnetic field [9,10]. The result is shown in Fig. 5. An
important result shows up that clearly differentiates both models. Despite
the agreement at low magnetic field strengths (eB < 0.1 GeV2) between
both models on how the CEP reacts to the B presence, for higher magnetic
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fields the CEP moves towards lower chemical potentials for Gs(eB), while
it moves for higher chemical potentials for G0

s. This might indicate that
for high enough magnetic fields, the chiral transition might change from an
analytic to a first-order phase transition at zero chemical potential when the
IMC effect is considered (there are some indications for this scenario [11]).
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Fig. 5. (Color online) The CEP position with increasing B field for G0

s (black) and
Gs(eB) (gray/red).
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