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We examine how the effect of hollowness in pp scattering at the LHC
(minimum of the inelasticity profile at zero impact parameter) depends on
modeling of the phase of the elastic scattering amplitude as a function of
the momentum transfer. We study the cases of the constant phase, the
Bailly, and the so-called standard parameterizations. It is found that the
2D hollowness holds in the first two cases, whereas the 3D hollowness is a
robust effect, holding for all explored cases.
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In this contribution, we focus on the aspects of the alleged hollowness
effect in pp scattering not covered in our previous paper [1] and talks [2, 3],
where the basic concepts and further details of the presented analysis may
be found. The recent TOTEM [4] and ATLAS (ALFA) [5] data for the
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differential elastic cross section for pp collisions at
√
s = 7 TeV and

√
s =

8 TeV [6, 7] suggest a stunning behavior (impossible to explain on classical
grounds), where more inelasticity in the reaction occurs when the protons
collide at an impact parameter b of a fraction of a fermi, than for head-
on collisions. Here, we discuss the sensitivity of this hollowness feature on
modeling of the phase of the elastic scattering amplitude as a function of
the momentum transfer. In previous analyses [1, 8–19], this effect was not
treated with sufficient attention.

In the present work, we parametrize separately the absolute value and
the phase of the strong elastic pp scattering amplitude. For the absolute
value, we apply the form of Ref. [20]

|f(s, t)| = p

∣∣∣∣∣∣∣
i
√
Ae

Bt
2(

1− t
t0

)4 + i
√
Ce

Dt
2
+iφ

∣∣∣∣∣∣∣ , (1)

where p is the CM momentum, and A, B, C, D, and t0 were adjusted to
the data. We neglect spin effects, hence the amplitude is to be understood
as spin-averaged. The quality of the fit to differential elastic cross section
from the LHC data at

√
s = 7 TeV can be assessed from Fig. 1 (a). This fit

is sensitive only to the square of the absolute value of the amplitude, and
not to its phase. However, this is not true of other features of pp scattering,
which do depend of the phase.
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Fig. 1. (a) Data for the differential elastic strong-interaction cross section at the
LHC energy of

√
s = 7 TeV [4] with the overlaid fit of Eq. (1). (b) Phase of the

strong-interaction elastic scattering amplitude, according to the three models of
Eqs. (3)–(5).
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The ρ(s, t) function is defined as the ratio of the real to imaginary parts
of f(s, t)

ρ(s, t) =
Ref(s, t)

Imf(s, t)
, f(s, t) =

i+ ρ(s, t)√
1 + ρ(s, t)2

|f(s, t)| . (2)

At t = 0, ρ(s, 0) can be determined when the total cross section σtot(s) and
the differential cross section extrapolated to t = 0 are known. In actual
analyses, interference with the Coulomb amplitude is used to determine ρ
(see, in particular, Ref. [21] for further information and literature). The
value of the phase at t = 0 for

√
s = 7 TeV has been determined to be

ρ(7 TeV, 0) = 0.145(100) [4]. However, one should bear in mind that the
extraction of the dependence of ρ(s, t) on t via the separation of the electro-
magnetic and strong amplitudes [22] is sensitive to the internal electromag-
netic structure of the proton and is subject to on-going debate [23].

In this contribution, we explore three popular parameterizations: con-
stant

ρ(t) = ρ0 = const , (3)

with ρ0 = 0.14, the Bailly et al. [24] parametrization

ρ(t) =
ρ0(s)

1− t/td
, (4)

where td = 0.52 GeV2 is the position of the diffractive minimum, and the
so-called standard parametrization1

ρ(t) = ρ0 +

(
ρ20 + 1

)
τt

τ2 + t20 − (ρ0τ + t0) t
, (5)

with t0 = 0.5 GeV2 and τ = 0.1 GeV2.
The b representation the scattering amplitude is defined via the Fourier–

Bessel transform of f(s, t), as given by the data parametrization

2ph(b, s) = 2

∞∫
0

q dq J0(bq)f
(
s,−q2

)
= i
[
1− eiχ(b)

]
,

where we have also introduced the eikonal phase χ(b). The equation for the
inelastic cross section is

σin ≡ σT − σel =
∫

d2b
(
4pImh(b, s)− 4p2|h(b, s)|2

)
, (6)

where the integrand is the inelasticity profile, with 0 ≤ σin(b) ≤ 1.
1 A similar form to the standard parametrization arises in the Pomeron exchange mod-
els, see, e.g., [25].
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In Fig. 2, we show σtot(b) for three parameterizations ρ(t) of Eqs. (3)–(5).
We note that hollowness appears for the first two models, whereas it is absent
for the “standard” parametrization. The imaginary and real parts of the
eikonal phase are presented in Fig. 3, where we note the corresponding dips
at b = 0 for the imaginary parts — a feature that follows from the eikonal
formalism [3].
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Fig. 2. (a) Inelastic cross section in the impact-parameter representation for three
models of ρ(t) from Eqs. (3)–(5). (b) Close-up for small values of b.
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Fig. 3. The same as in Fig. 2, but for the imaginary (a) and real (b) parts of the
eikonal scattering phase.
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Finally, in Fig. 4, we show the imaginary parts of the optical potential
V (r) and the on-shell optical potential W (r), introduced in Refs. [1, 2]. We
note that in this 3D picture of pp scattering, hollowness occurs for all the
considered models of ρ(t).
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Fig. 4. Imaginary parts of the optical potential V (r) (a) and the on-shell optical
potential W (r) (b), introduced in Refs. [1,2], plotted for parameterizations of ρ(t)
from Eqs. (3)–(5).

To summarize, a firm establishment of the 2D hollowness requires a care-
ful determination of the phase of the strong-interaction elastic amplitude.
On the other hand, hollowness in 3D is a robust effect. The intriguing
property of hollowness must have quantum origin [2,3], hence touches upon
very basic features of the scattering mechanism. Hopefully, future data and
more refined analyses based on the Coulomb separation will sort out the
issue in 2D.
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