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We solve a Minkowski-space integral equation, derived in the Covariant
Spectator Theory, for quark–antiquark bound states describing heavy and
heavy–light mesons. The equation’s kernel contains a one-gluon exchange
interaction and a covariant generalization of a linear confining potential
with a mixed scalar, pseudoscalar, and vector Lorentz structure, character-
ized by a continuous mixing parameter. We investigate to what extent the
Lorentz structure of the confining kernel can be determined by fitting the
mixing parameter to the meson spectrum.
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1. Introduction

Already several decades ago it has become clear that many mesons can
be well described as bound states of a quark and an antiquark, interacting
through a linear and a one-gluon exchange (OGE) potential [1,2]. However,
modern unified descriptions of all mesons have to go beyond these early
works in several aspects, among which we emphasize a proper treatment
of chiral symmetry and relativity. Among the frameworks that meet these
requirements figure prominently Lattice QCD (e.g., [3–6]) and the Dyson–
Schwinger/Bethe–Salpeter (DS/BS) approach [7–12].

We use the Covariant Spectator Theory (CST), which is related to the
BS equation, but goes beyond ladder approximation by effectively taking
contributions from crossed-ladder diagrams into account [13, 14]. Chiral
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symmetry can also be implemented exactly in CST [15,16], but in this work,
we calculate heavy and heavy–light mesons, where this aspect is of minor
importance. Instead, we focus on the role of relativity and, in particular, on
the Lorentz structure of the confining interaction, which is at present still
an open problem.

2. The CST bound-state equation

The one-channel spectator equation (1CSE) for the bound-state vertex
function Γ is shown graphically in Fig. 1. It has the same structure as
the BS equation, except that particle 1 (by convention the heavier particle,
unless they have equal mass) is on its positive-energy mass shell. It is an
approximation to the full, four-channel equation, which should work very
well in systems with at least one heavy particle [17].
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Fig. 1. The one-channel spectator equation (1CSE) for the bound-state vertex
function Γ of a quark (particle 1) and an antiquark (particle 2), interacting through
a kernel V. An “×” on a line means that the particle is on its positive-energy mass
shell, and the corresponding four-momentum carries a “ ˆ ”.

We work in the meson’s rest frame, where the total momentum is P =
p̂1 − p2 = (µ,0), p̂1 = (E1p,p) is the on-shell momentum of particle 1,
with E1p =

√
m2

1 + p2, and the external relative momentum is p = (p̂1 +
p2)/2 = (E1p − µ/2,p) (analogous expressions hold for the internal relative
momentum k). The 1CSE can be written as [17]
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∫

d3k
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(1)
where k2 = k̂1−P , and we use fixed quark massesmi (which will be replaced
by dynamical mass functions in future work). Our interaction kernel V has
the form

V(p, k) =
[
(1− y)

(
11 ⊗ 12 + γ51 ⊗ γ52

)
− y γµ1 ⊗ γµ2

]
VL(p, k)

−γµ1 ⊗ γµ2 [VOGE(p, k) + VC(p, k)] , (2)

where VL(p, k) is a covariant generalization of a linear confining potential,
VOGE(p, k) is the short-range one-gluon-exchange interaction in the Feynman
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gauge, and VC(p, k) a covariant form of a constant potential. We use a Pauli–
Villars regularization with a cut-off parameter Λ = 2m1 for all mesons. The
detailed form of the kernel is given in [17].

The OGE and constant kernels are Lorentz-vector interactions. The
Lorentz structure of the linear confining kernel in (2) is a mixture of equally-
weighted scalar and pseudoscalar coupling (S+P) on the one hand, which
satisfies the axial–vector Ward–Takahashi identity [18], and vector coupling
(V) on the other hand. By adjusting the mixing parameter y, we can contin-
uously vary the relative weight of these structures, with y = 0 yielding a pure
S+P coupling, and y = 1 a pure V coupling. For any value of y, the non-
relativistic limit of this kernel is always, when transformed into coordinate
space, the Cornell-type potential V (r) = σr − αs/r − C.

For numerical calculations, Eq. (1) is converted into an eigenvalue equa-
tion for the so-called “relativistic wave functions”, defined as spinor matrix
elements of the vertex functions multiplied by the quark propagators. In the
nonrelativistic limit, they turn then into Schrödinger wave functions. By
solving this eigenvalue problem, we obtain, very conveniently, the masses
and wave functions of a whole tower of excited states.

3. Numerical results and discussion

Working with the 1CSE, in [19], we performed least-square fits of the
model parameters σ, αs, and C, to the masses of selected data sets containing
heavy and heavy–light mesons with JP = 0± and 1±, while choosing fixed
values for the quark masses and keeping y = 0. In this work, we allow y
and the quark masses to vary, which represents a considerable increase in
required computing time. The data set S1 contains 9 meson states with 0−,
the set S2 (S2′) contains 25 (24) states with 0± and 1−, and the set S3
contains 39 states with 0± and 1± (the states are listed in [17]).

Table I shows the parameters of the various models determined in our
fits, which include the ones found in [19], M0S1 and M0S2, for comparison.
The results of four of our models are compared to the data in Fig. 2. In fact,
all models of Table I reproduce the data very well, with r.m.s. differences
to the largest data set S3 ranging from 30 to 40 MeV. This is a remarkable
agreement, considering that we are performing global fits, using the same
model parameters for the whole range of mesons, with masses from below
2 GeV to over 10 GeV.

Fitting the quark masses does not lead to a significant improvement over
the results of [19]. The light and charm quark masses can be varied by a few
hundred MeV (the bottom quark mass to a somewhat lesser degree) without
noticeably deteriorating the quality of the fit.
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TABLE I

Kernel parameters of the different models considered in this work. Quark masses
and C are in GeV, σ in GeV2, αs and y are dimensionless. The values in boldface
were held fixed during the fits of the respective models.

Model σ αs C y mb mc ms mq

M0S1 0.2493 0.3643 0.3491 0.0000 4.892 1.600 0.4478 0.3455
M1S1 0.2235 0.3941 0.0591 0.0000 4.768 1.398 0.2547 0.1230
M0S2 0.2247 0.3614 0.3377 0.0000 4.892 1.600 0.4478 0.3455
M1S2 0.1893 0.4126 0.1085 0.2537 4.825 1.470 0.2349 0.1000
M1S2′ 0.2017 0.4013 0.1311 0.2677 4.822 1.464 0.2365 0.1000
M1S3 0.2022 0.4129 0.2145 0.2002 4.875 1.553 0.3679 0.2493
M0S3 0.2058 0.4172 0.2821 0.0000 4.917 1.624 0.4616 0.3514
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Fig. 2. Masses of heavy–light and heavy mesons with JP = 0± and 1±. The
symbols represent the 1CSE results calculated with the models M1S1 (circle), M1S2′
(triangle), M1S3 (open square), and M0S3 (filled square) of Table I. Solid horizontal
lines are the measured meson masses [20]. Dashed horizontal lines across the figure
indicate open flavor thresholds.
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The Lorentz mixing parameter still prefers y = 0 when we fit to pseu-
doscalar states only (set S1), but a minimum between y = 0.2 and 0.3 is
found when larger data sets are used. To see if this contribution of V cou-
pling is significant, we perform a series of calculations where the value of y
is fixed at different values and all other parameters are refitted. Figure 3
shows the r.m.s. difference to various data sets as functions of y. Clearly,
the minima for data set S2 and S3 are so shallow that values of y between 0
and roughly 0.25 (for S3) are equally compatible with the meson spectrum.
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Fig. 3. R.m.s. difference between calculated and experimental meson masses as a
function of the mixing parameter y, using data set S1 (solid line), S2′ (dashed
line), and S3 (dotted line). The symbols indicate the values for the models shown
in Fig. 2.

We, therefore, cannot make a definite conclusion about whether the con-
fining interaction is of pure S+P nature, or if it contains also V coupling,
by looking at the meson masses only. However, other observables may be
more sensitive to y. As an example, Fig. 4 shows sizeable changes in the
contributions of spin singlet and triplet P waves to the norm integral of
the cc̄ ground-state wave function when y is varied in the series of fits de-
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Fig. 4. Probabilities of spin triplet and singlet P waves in the charmonium ground-
state as a function of the mixing parameter y.
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scribed above. Although wave functions are not observables themselves,
there are observables that depend strongly on the detailed structure of the
wave functions, such as decay constants. By studying the dependence of
decay constants on y, we should be able to obtain more precise constraints
on the Lorentz structure of the confining interaction. This work is planned
for the near future.
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