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1. Introduction

Since Gribov [1], we already know that the Faddeev—Popov construction
is not valid at the non-perturbative level. In this regime, we have multiple
intersections of the gauge orbits with the hypersurface corresponding to a
given gauge condition f(A) = 0, so-called Gribov copies. To work around
this problem, Gribov’s proposal was to restrict the domain of integration
in the path integral to a certain region {2 in field space, called the Gribov
region, which is free from infinitesimal Gribov copies. In the linear covariant
gauge and taking into account the dimension two condensates, <AZAZ> and
(@Zbgozb - (I)l‘jbwgb>, the (BRST invariant) restriction to the Gribov region is
achieved by the action

Sic = Sym + Sar + Sraz + S, (1)

where Syw is the Yang—Mills action, Sgr is the Faddeev—Popov gauge-fixing
in linear covariant gauges, ¢.e.

Sar = / da (% b + b 0, A% + é“auDzb(A)cb) ) (2)

* Presented at “Excited QCD 2017, Sintra, Lisbon, Portugal, May 7-13, 2017.
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with « being the gauge parameter, Sgaz is the Refined Gribov—Zwanziger
(RGZ) action given by [2]

Sraz = /d4:c (—@,‘jcj\/lab (Ah> O 4 DM (Ah>
oty e () (k) + T [ () ()"
oot fate (gt -aptar) ). g

where M®(A") is the Hermitian, gauge invariant operator M (A") =
—5%9% 4 g f“bC(Ah)zOH, while ~ is the Gribov parameter, dynamically fixed
by the gap equation [3]

<fabcAZ,a (@ZC+@ZC)>=2d(N2—1)72/92- (4)

The configuration AZ is a non-local power series in the gauge field, obtained
by minimizing the functional f4[u| along the gauge orbit of A, [4], with

falu] = 1&1? Tr/d4;1: ALAL, A= ul Ayu+ éuTﬁuu. (5)

One finds that a local minimum is given by
0,0y
h h
= (%0 oo,

¢y = A, — [azaA A] [828A Ay 8A] +0 (4% .  (6)

" 02

Following [2,5], we set
h _ h a a __ ama 4
A= (A )uT = WLALT b+ - h10h (7)

while h = €9¢“T* . The local invariance of AZ under a gauge transformation
u € SU(N) is clear from

h—uth, B shlu, A, ut A+ Suldu. 8)
g

The term

Sr = /d4m 740, <Ah)2 9)

implements, through the Lagrange multiplier 7, the transversality of the
composite operator (Ah)l‘j, 8“(Ah)z =
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The action S enjoys an exact nilpotent local BRST invariance, 5. = 0
[2].

For the current work, we are mostly interested in the general form of the
gluon propagator [5]

Dy (p) = D(p) P (p) + L(p) p’;f” , (10)

with the transverse form factor D(p)

D =
(») Pt (M2 1 m2)p? + M2m2 + A8

(11)
containing all non-trivial information, next to L(p) = a/p?, with

bub Pub
P;w(p) = 5/w - %7 L/M/(p) = ;QV (12)

the transversal and longitudinal projectors.

2. The topological susceptibility
The topological susceptibility is linked to the 1’ mass via [6]

4N¢
m??, = ?Xé%:o,Nf:O = O(1/N), (13)
™

where 6 is the vacuum angle and f; the pion decay constant. Witten and
Veneziano suggested that the vacuum topology fluctuations can be captured
by the occurrence of an unphysical mass pole [6], the Veneziano ghost, in
the topological current correlator

Pubv <KMKV>p:0 #0, (14)

whereby K, is the topological Chern-Simons current

2
g a g aoc C
K = 10 €unpr Ava (apA(, +ar AﬁA(,) . (15)

Following the Euclidean conventions of [7]|, we have

' =— lim puby (K K,) > 0. (16)
p2—0
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For the Kéillén—Lehmann spectral density of the current correlator, we have

(Ku(p)Ky,(—p)) = (5W _ pulgu

p >
[ 40e(0)
_ Pubv pPL\T
- <5“”_ P? >/dTT+p2
0
[
Pubv p|| T
d 17
T / T ()
0
based on Fuclidean invariance. Then, we already find that
[
4_ 2 2 o2 PINT
—x =1 K =1 dr——=. 18
= i 7)< timo? [ ar P as

0

From dimensional analysis, it is clear that we need 2 subtractions (p (1) ~ 7
for 7 — 00), so we actually have

4 .6 py(7)
—x~ = lim dr—————. 1
A / T(T + p?)r? (19)
0

The spectral density associated with the Kéallén—-Lehmann representation of
the physical part of the K, correlation function is given by [§]

gt (N2 — 1) (7'2 —4p% — 4ar) (d-1)/2

pI(T) = —244 A 92+577/2 (41) /2 (20)
for 7 > 7. = 2(a + Va2 + b2), where a = M3 /2 and b = /M3 — M3 /4.
For the MOM renormalized gluon propagator, we must use
2 M2 1 4 M2 2 M4
D(p2>:Z4p42_21 1 Z:7M+22N—; > (21)
p* + Myp® + Mg 1% pe + Mj

For the dynamical mass parameters, rather than attempting to solve their
gap equations (4), we will resort to estimates obtained from fitting (21) to
lattice propagator data [9].

For SU(3), we approximated (19) with the [3,1] Padé rational function
in variable p?, around p? = P2. This scale P? should be not too small, so
that we can trust the perturbative regime and not too large so that we are
taking into account sizable non-perturbative effects and perform a sensible
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extrapolation of the approximant to zero momentum to get an estimate
for x*. In the Lh.s. of Fig. 1, we show x(u?, P? = 5 GeV?), and we clearly
observe an optimal value of 2 = 3.330 GeV2. From the r.h.s. of Fig. 1,
we are unable to extract an optimal scale from where to start the Padé
approximation over a reasonable interval of P2-values, P? = 3...7 GeVZ.
Unfortunately, we cannot make a definite, in the sense of optimal, prediction
for x from the right graph of Fig. 1. A natural choice would then be to
set P? = p2, since the MOM renormalization scale pu? is subject to the
same assumptions as P? when used to renormalize lattice data. This gives
X =~ 142 MeV, a bit below the lattice ballpark of x ~ 200 MeV [10].
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Fig. 1. Topological susceptibility y for variable y? and fixed P? = 5 GeV? (left)
and for variable P2 and fixed p? = 3.330 GeV? (right) p? (SU(3) case).

For N = 2, following the same procedure as for N = 3, we get the graphs
of Fig. 2 in the N = 2 case. We observe that there is now neither an optimal
©? nor P2. For more details about the calculus and references, see [8].
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Fig.2. Topological susceptibility y for variable ;2 and fixed P? = 5 GeV? (left)
and for variable P2 and fixed p? = 3.330 GeV? (right) p? (SU(2) case).
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3. Conclusion

Although we cannot present a precise value for the topological suscep-
tibility, we did obtain rough estimates for it, qualitatively compatible with
lattice data. In order to improve upon this crude estimation, we would have
to include the next order correction in future work. However, this will be
computationally challenging, because of the enlarged set of vertices in the
now considered Refined Gribov—Zwanziger action for the linear covariant
gauge.
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