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In these proceedings, I review the status of an ongoing project that aims
at solving the quark propagator Dyson–Schwinger equation in the complex
domain. The novel aspect of the approach is that the non-analyticities aris-
ing throughout the iteration of the equation are to be taken into account
in an appropriate way through dynamic contour deformation. Because of
the complexity of the approach, these studies are undertaken in a heavily
truncated scenario that serves as a toy model for the development of the
numerical techniques that are required to treat the system in a mathemat-
ically sound way.
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1. Introduction

The analytic properties of the quark propagator Dyson–Schwinger equa-
tion (DSE) were in the focus of many studies [1–10], to present a non-
exhaustive list that spans more than two decades. While most of these
studies were conducted in Euclidean space, there are also investigations in
Minkowski space, e.g. [11], as well as other impressive studies of the analytic
properties of various Green’s functions using DSEs [12, 13]. The interest in
this field is mainly driven by the necessity of extending the real quark prop-
agator solutions to complex momenta as required for bound state equations
(see e.g. [14]), but also because the positivity properties of the propagator
can be used to establish a sufficient criterion to remove a certain degree of
freedom from the space of asymptotic states (see e.g. [4]). Thus, knowing
the solution of the quark propagator DSE in the complex domain is highly
desirable. Unfortunately, the evaluation of the quark DSE for complex ex-
ternal momenta is tedious. The main complication is that once the external
momentum is allowed to be a complex number, the integration contour of
the quark self-energy loop must be deformed away from the real axis, such
that the loop momentum has to be treated as a complex quantity as well.
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2. Building a reliable numerical framework

The rainbow truncated quark propagator DSE reads

S−1 (p) = S−1
0 (p) +

∫
d4q

(2π)4

[
G
(
(p− q)2

)
× (p− q)2Dµν

free (p− q) γ
µS (q) γν

]
, (1)

where the inverse propagator is given by

S−1 (p) = δαβ
(
i�p A

(
p2
)
+B

(
p2
)
1D

)
, (2)

and the interaction term G is specified in Section 3. Solving the quark
propagator DSE in the complex domain requires fast, reliable and robust
numerical tools. Establishing such a framework will be achieved through
the project outlined in figure 1. It is partitioned into three sections.

Fig. 1. Outline of the project, see the main text.

— Perturbative one-loop integrals in the complex domain
(see Refs. [15–17]).
In these studies, the problem of solving Green’s functions to one-loop
order in the complex domain has been addressed. While these cal-
culations were simple in the sense that there was no iterative pro-
cedure involved, they featured all the complications induced by the
external momentum being complex. Allowing the external momen-
tum to be complex leads to branch cuts in the complex plane of the
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radial integration variable of the loop integral, and the contours have
to be deformed dynamically. This approach has been implemented on
a Graphics Processing Unit (GPU), and the results have been veri-
fied by studying an example for which an exact solution is known.
Since all quantities (and their analytic properties) in the loop integral
are known, one can determine the analytic properties of the integrand
prior to the integration, and choose appropriate contours depending
on where the obstructive structures appear. Similar techniques to the
ones used here have been recently applied successfully to a complicated
integrand with two overlapping branch-cuts [18].

— The quark DSE for complex momenta without contour de-
formation (see Ref. [10]).
The second important step towards building a framework that can
cope with the complications arising in the context of complex external
momenta is to study iterative integral equations for complex momenta
without deforming the contour. In the case of the quark propagator,
there are truncations that give rise to analytic integrands for the quark
propagator dressing functions (IR part of [19], as well as [20]), and no
contour deformation is required. I used this setting to develop tools
for detecting poles in the solution numerically.

— The quark DSE for complex momenta with contour deforma-
tion (in progress).
The last step in this program is to solve the full case, that is, adjust
the integration contours as necessary. The main difference to the per-
turbative case discussed above is that the analytic properties of the
(self-consistently obtained) solution is not known a priori. However,
prior to solving the equation iteratively, one has to choose initial values
for the complex dressing functions A and B. Once the initial functions
have been chosen, the situation after the first iteration step is simi-
lar to the case of the perturbative integration as discussed in [17, 21].
Using the tools (with some extensions) for pole detection discussed
in [10], the code that iterates the system in the complex plane can dy-
namically produce a contour deformation that is appropriate for the
analytic properties of the integrand at any given iteration step. Since
the contours for the first iteration step can be easily worked out by
hand, one can also test the system by comparing the deformations pro-
duced by the code with the ones that have been worked out explicitly.
Using this technique, in principle any integration kernel that does not
introduce further unknown quantities (for example, dressing functions
of the quark–gluon vertex without knowledge of their analytic proper-
ties) can be treated in a mathematically sound way. Apart from the
Maris–Tandy model used here, one can then, for example, study the
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Qin–Chang model [22], or even go beyond the rainbow approximation.

Following these three steps, I hope that I will be able to provide a fast,
reliable and robust numerical framework to solve the quark propagator DSE
in the complex domain.

3. Adding the UV term without contour deformation

Before studying the contour deformations in detail, it is, of course, inter-
esting to see what happens to the pole structure if the ultra-violet term of the
Maris–Tandy model is taken into account, while the contour is maintained
along the real axis. The Maris–Tandy model is given by

Z1F g2
G

k2
=

4π2

ω6
Dk2e−

k2

ω2 + 4π2

12
33−2Nf

1
k2

(
1− e

− k2

4m2
t

)
1
2 ln

[
e2 − 1 +

(
1 + k2

Λ2
QCD

)2
] , (3)

and the parameters used here are Nf = 4, ΛNf=4
QCD = 0.234 GeV, ω = 0.5 GeV,

D = 1.0 GeV2 and mt = 0.5 GeV.
Figure 2 shows the solution without (a) and with (b) UV term. At first

sight, it appears that the inclusion of the UV term has only a mild effect on
the solution. However, one has to keep in mind that the solution shown in

(a) (b)

Fig. 2. <σV (p) = < A(p)
p2A2(p)+B2(p) in the complex plane of the external momentum

without contour deformation. (a): IR part only. (b): Full Maris–Tandy model [19].
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figure 2 (b) has been obtained without contour adjustment, and is thus not
the actual solution of the quark propagator in the complex plane. Also, upon
close inspection (but unfortunately hard to see in print), the surface of this
plot is much more rugged than the smooth surface of the IR solution shown
in figure 2 (a). This is a typical sign that the integration contour along
the real axis has crossed a branch cut or encountered some non-analytic
obstructions. The poles appear to have shifted slightly. Another interesting
aspect is the application of Cauchy’s argument principle to the denominator
of the vector part of the propagator, as discussed in [10]. If only the IR part
of the MT model is considered, the integral yields δ = NZ −NP = 3 as the
difference between zeros and poles in the denominator, which gives rise to
three poles in the propagator (two c.c. poles, one on the real axis). Once
the UV term is added, the same integral changes to two, which can either
be due to an additional pole in the expression, or due to the numbers of
zeros having decreased. In any case, the resulting analytic properties will be
altered, which emphasizes the necessity of a thorough analysis and a proper
treatment of the full model.
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