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We propose a “matter–antimatter coexistence method” for the finite-
density lattice QCD, aiming at a possible solution of the sign problem. In
this method, we consider matter and antimatter systems on two parallel
R4-sheets in five-dimensional Euclidean space-time. For the matter system
M with a chemical potential µ ∈ C on a R4-sheet, we also prepare the
antimatter system M̄ with −µ∗ on the other R4-sheet shifted in the fifth
direction. In the lattice QCD formalism, we introduce a correlation term
between the gauge variables Uν ≡ eiagAν in M and Ũν ≡ eiagÃν in M̄ , such
as Sλ ≡

∑
x,ν 2λ{Nc − Re tr[Uν(x)Ũ†ν (x)]} '

∑
x

1
2λa

2{Aaν(x) − Ãaν(x)}2
with a real parameter λ. In the limit of λ → ∞, a strong constraint
Ũν(x) = Uν(x) is realized, and the total fermionic determinant is real and
non-negative. In the limit of λ → 0, this system goes to two separated
ordinary QCD systems with the chemical potential of µ and −µ∗. On a
finite-volume lattice, if one takes a large enough value of λ, Ũν(x) ' Uν(x) is
realized and there occurs a phase cancellation approximately between two
fermionic determinants in M and M̄ , which is expected to suppress the
sign problem and to make the lattice calculation possible. For the obtained
gauge configurations of the coexistence system, matter-side quantities are
evaluated through their measurement only for the matter part M . By the
calculations with gradually decreasing λ and their extrapolation to λ = 0,
physical quantities in finite density QCD are expected to be estimated.
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1. Introduction

The lattice QCD Monte Carlo calculation has revealed many aspects of
the QCD vacuum and hadron properties in both zero and finite tempera-
tures. At finite density, however, lattice QCD is not yet well-investigated,
because of a serious problem called the “sign problem” [1, 2], which origi-
nates from the complex value including minus sign of the QCD action and
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the fermionic determinant at finite density, even in the Euclidean metric [3].
In fact, the Euclidean QCD action S[A,ψ, ψ̄;µ] at finite density with the
chemical potential µ is generally complex

S
[
A,ψ, ψ̄;µ

]
= SG[A] +

∫
d4x

{
ψ̄( /D +m+ µγ4)ψ

}
∈ C , (1)

with the gauge action SG[A] ∈ R and covariant derivative Dν ≡ ∂ν + igAν .
Then, the action factor cannot be identified as a probability density in the
QCD generating functional, unlike ordinary lattice QCD calculations.

In this paper, aiming at a possible solution of the sign problem, we
propose a new approach of a “matter–antimatter coexistence method” for
lattice QCD at finite density with a general chemical potential µ ∈ C.

2. Matter–antimatter coexistence method

Our strategy is to use a cancelation of the phase factors of the fermionic
determinants between a matter system with µ and an antimatter system
with −µ∗, and our method is based on the general property [3]

S
[
A,ψ, ψ̄;µ

]∗
= S

[
A,ψ, ψ̄;−µ∗

]
(2)

for the Euclidean QCD action S[A,ψ, ψ̄;µ] in the presence of the chemical
potential µ ∈ C. Actually, the fermionic kernel DF corresponding to /D+m

generally satisfies D†F = γ5DFγ5 in lattice QCD, so that one finds[
ψ̄(DF + µγ4)ψ

]∗
= ψ̄ (DF − µ∗γ4)ψ , (3)

which leads to relation (2), and

Det (DF + µγ4)
∗ = Det (DF − µ∗γ4) . (4)

2.1. Definition and setup

In the “matter–antimatter coexistence method”, we consider matter and
antimatter systems on two parallel R4-sheets in five-dimensional Euclidean
space-time. For the matter system M with a chemical potential µ ∈ C on a
R4-sheet, we also prepare the antimatter system M̄ with −µ∗ on the other
R4-sheet shifted in the fifth direction, as shown in Fig. 1.

We put an ordinary fermion field ψ(x) with the mass m and the gauge
variable Uν(x) ≡ eiagAν(x) at x ∈ R4 on the matter system M , and we put
the other fermion field Ψ(x) ≡ ψ(x+5̂) with the same mass m and the gauge
variable Ũν(x) ≡ eiagÃν(x) ≡ Uν(x+ 5̂) on the antimatter system M̄ .



Matter–Antimatter Coexistence Method for Finite Density QCD 991

Fig. 1. The matter–antimatter coexistence system in five-dimensional Euclidean
space-time. We put the matter system M with µ, Uν(x) and ψ(x) on a R4-sheet,
and the antimatter system M̄ with −µ∗, Ũν(x) = Uν(x+ 5̂) and Ψ(x) = ψ(x+ 5̂)

on the other R4-sheet shifted in the fifth direction.

In the lattice QCD formalism, we introduce a correlation term between
the gauge variables Uν(x) in M and Ũν(x) in M̄ at x ∈ R4, such as

Sλ ≡
∑
x,ν

2λ
{
Nc − Re tr

[
Uν(x)Ũ †ν (x)

]}
(5)

with a real parameter λ (≥ 0), which connects two different situations:
Ũν(x) = Uν(x) in λ→∞ and two separated QCD systems in λ→ 0. Near
the continuum limit, this additional term becomes

Sλ '
∑
x

1
2λa

2
{
Aaν(x)− Ãaν(x)

}2
'
∫

d4x 1
2λphys

{
Aaν(x)− Ãaν(x)

}2
(6)

with λphys ≡ λa−2.
In fact, the total lattice action in this method is written as

S = SG[U ] +
∑
x

ψ̄ (DF[U ] + µγ4)ψ + SG

[
Ũ
]

+
∑
x

Ψ̄
(
DF

[
Ũ
]
− µ∗γ4

)
Ψ

+
∑
x,ν

2λ
{
Nc − Re tr

[
Uν(x)Ũ †ν (x)

]}
(7)

with the gauge action SG[U ] ∈ R and the fermionic kernel DF[U ] in lat-
tice QCD. After integrating out the fermion fields ψ and Ψ , the generating
functional of this theory reads
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Z =

∫
DUe−SG[U ]Det (DF[U ] + µγ4)

∫
DŨe−SG[Ũ]Det

(
DF

[
Ũ
]
− µ∗γ4

)
×e−

∑
x,ν 2λ

{
Nc−Re tr

[
Uν(x)Ũ

†
ν (x)

]}
=

∫
DU

∫
DŨe−(SG[U ]+SG[Ũ])Det

{
(DF[U ] + µγ4)

(
DF

[
Ũ
]
− µ∗γ4

)}
×e−

∑
x,ν 2λ

{
Nc−Re tr

[
Uν(x)Ũ

†
ν (x)

]}
. (8)

In the continuum limit, this generating functional is expressed as

Zcont =

∫
DA

∫
DÃe−(SG[A]+SG[Ã])Det

{(
/D +m+ µγ4

) (
/̃D +m− µ∗γ4

)}
×e−

∫
d4x 1

2
λphys{Aaν(x)−Ãaν(x)}2 (9)

with the continuum gauge action SG[A] ∈ R and D̃ν ≡ ∂ν + igÃν .
In the practical lattice calculation with the Monte Carlo method, the

fermionic determinant in Z is factorized into its amplitude and phase fac-
tor as

Z =

∫
DU

∫
DŨe−(SG[U ]+SG[Ũ])e

−
∑
x,ν 2λ

{
Nc−Re tr

[
Uν(x)Ũ

†
ν (x)

]}

×
∣∣∣Det

{
(DF[U ] + µγ4)

(
DF

[
Ũ
]
− µ∗γ4

)}∣∣∣ Ophase

[
U, Ũ

]
, (10)

and the phase factor of the total fermionic determinant

Ophase

[
U, Ũ

]
≡ eiarg[Det{(DF[U ]+µγ4)(DF[Ũ]−µ∗γ4)}] ∈ C (11)

is treated as an “operator” instead of a probability factor, while all other
real non-negative factors in Z are treated as the probability density.

2.2. Property and procedure

The additional term Sλ connects the following two different situations
as the two limits of the parameter λ.

1. In the limit of λ→∞, a strong constraint Ũν(x) = Uν(x) is realized,
and the phase factors of two fermionic determinants Det(DF[U ]+µγ4)

and Det(DF[Ũ ] − µ∗γ4) are completely cancelled, owing to Eq. (4).
Therefore, the total fermionic determinant is real and non-negative

Det
{

(DF[U ] + µγ4)
(
DF

[
Ũ = U

]
− µ∗γ4

)}
≥ 0 , (12)

and the sign problem is absent [4]. Note, however, that this system
resembles QCD with an isospin chemical potential [5].
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2. In the limit of λ → 0, this system goes to two separated ordinary
QCD systems with the chemical potential of µ and −µ∗, although
the cancellation of the phase factors cannot be expected between the
two fermionic determinants Det(DF[U ] +µγ4) and Det(DF[Ũ ]−µ∗γ4)
for significantly different Uν(x) and Ũν(x), which are independently
generated in the Monte Carlo simulation.

On a four-dimensional finite-volume lattice, if an enough large value of λ
is taken, Ũν(x) ' Uν(x) is realized and there occurs the phase cancellation
approximately between the two fermionic determinants Det(DF[U ] + µγ4)

and Det(DF[Ũ ]−µ∗γ4) inM and M̄ , so that one expects a modest behavior
of the phase factor Ophase[U, Ũ ] in Eq. (11), which leads to feasibility of the
numerical lattice calculation with suppression of the sign problem.

Once the lattice gauge configurations of the coexistence system are ob-
tained with the most importance sampling in the Monte Carlo simulation,
matter-side quantities can be evaluated through their measurement only for
the matter part M with µ.

By performing the lattice calculations with gradually decreasing λ and
their extrapolation to λ = 0, we expect to estimate the physical quantities
in finite density QCD with the chemical potential µ.

3. Summary, discussion and outlook

We have proposed a “matter–antimatter coexistence method” for the
lattice calculation of finite density QCD. In this method, we have prepared
matter M with µ and antimatter M̄ with −µ∗ on two parallel R4-sheets
in five-dimensional Euclidean space-time, and have introduced a correlation
term Sλ ≡

∑
x,ν 2λ{Nc − Re tr[Uν(x)Ũ †ν (x)]} '

∑
x

1
2λa

2{Aaν(x)− Ãaν(x)}2

between the gauge variables Uν = eiagAν inM and Ũν = eiagÃν in M̄ . In the
limit of λ→∞, owing to Ũν(x) = Uν(x), the total fermionic determinant is
real and non-negative, and the sign problem is absent. In the limit of λ→ 0,
this system goes to two separated ordinary QCD systems with the chemical
potential of µ and −µ∗.

For an enough large value of λ, Ũν(x) ' Uν(x) is realized and a phase
cancellation approximately occurs between two fermionic determinants in
M and M̄ , which is expected to suppress the sign problem and to make
the lattice calculation possible. For the obtained gauge configurations of
the coexistence system, matter-side quantities can be evaluated by their
measurement only for the matter part M . By gradually reducing λ and the
extrapolation to λ = 0, it is expected to obtain estimation of the physical
quantities in finite density QCD with µ.
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In this paper, we have demonstrated this method with taking Sλ in
Eq. (5) as the simplest correlation between Uν(x) in M and Ũν(x) in M̄ . In
this method, however, there is some variety on the choice of the correlation
between Uν(x) and Ũν(x). For instance, it may be interesting to consider
the other correlation term like

S̄ξ ≡
∑
x

8ξ

(∑
ν

{
Nc − Re tr

[
Uν(x)Ũ †ν (x)

]})3

'
∫

d4x 1
8a

2ξ

[{
Aaν(x)− Ãaν(x)

}2
]3

(13)

with a dimensionless non-negative real parameter ξ. At the classical level,
this correlation is an irrelevant interaction and it gives vanishing contribu-
tions in the continuum limit a→ 0, like the Wilson term −1

2arψ̄D
2ψ.

The next step is to perform the actual lattice QCD calculation at finite
density using this method. It would be useful to combine this method with
the other known ways such as the hopping parameter expansion [6], the com-
plex Langevin method [1] and the reweighting technique [2]. For example,
if one utilizes the hopping parameter expansion, the quenched-level analysis
becomes possible in this method, since the additional term Sλ only includes
gauge variables.

Efficiency of this method would strongly depend on the system parame-
ters, such as the space-time volume V , the quark massm, the temperature T
and the chemical potential µ. In any case, this method is expected to enlarge
calculable area of the QCD phase diagram on (T, µ,m, V ).
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