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The chiral geometry of the angular momentum in the intrinsic frame
is extracted from angular momentum projected wave functions in the lab-
oratory frame by the K-Plot and Azimuthal-Plot. The method is demon-
strated by an application to the chiral doublet bands in 128Cs, based on
the standard pairing-plus-quadrupole Hamiltonian. The observed energy
spectra and the electromagnetic transitions are well-reproduced, and the
K-Plot and Azimuthal-Plot obtained give evolution of angular momentum
geometry with spin, by which the chirality is demonstrated.
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1. Introduction

Since its first prediction by Frauendorf and Meng in 1997 [1], the spon-
taneous chiral symmetry breaking in triaxial nuclei has attracted intensive
attention. The spontaneous chiral symmetry breaking is due to the aplanar
orientation of the angular momentum with respect to the intrinsic frame, in
which case the angular momentum has non-vanishing components on all the
three principle axes, contributed by the valence hole(s), the valence parti-
cle(s), and the rotating triaxial core, respectively. These three components
can form a left-handed or a right-handed configuration, by which the spon-
taneous breaking of chiral symmetry is defined.

The spontaneous symmetry breaking in the intrinsic frame manifests it-
self in the laboratory frame by the chiral doublet bands, which is a pair of
∆I = 1 bands with the same parity. The chiral doublet bands are charac-
terized by the near degenerate energy spectra and specific behaviors in the
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electromagnetic transitions. The first examples of chiral doublet bands were
observed in 2001 in four isotones with N = 75 in the A ∼ 130 region [2].
Since then, more than 40 candidates of chiral doublet bands have been ob-
served in mass regions A ∼ 80 [3,4], A ∼ 100 [5–10], A ∼ 130 [2,11–16] and
A ∼ 190 [17, 18] (see Refs. [19–21] for details).

The first theoretical prediction for chiral doublet bands is based on the
particle rotor model (PRM) and the tilted axis cranking (TAC) approaches,
which have become the mainstream theoretical methods adopted in the stud-
ies of nuclear chirality. The advantage of the PRM is that it treats the
nuclear rotation in a fully quantum mechanical way, with the angular mo-
mentum conserved as a good quantum number. Therefore, the PRM gen-
erates energy spectra and electromagnetic transitions that can be directly
compared with the data. PRM has been generalized to include the pairing
correlations [22–26], and many-quasiparticle configurations [27–29]. Satis-
factory descriptions for chiral doublet bands have been given for 78,80Br [3,4],
103,105,106Rh [24, 28], 126Cs [22], 135Nd [27], and 198Tl [18]. Multiple chiral
bands [29–31] are studied as well.

TAC approach described in Ref. [1] is a semi-classical approximation
of the PRM. TAC approach can be combined with the Woods–Saxon (or
Nilsson) plus Strutinsky shell correction methods, or density functionals.
TAC has been used to describe chiral doublet bands in 134Pr and 188Ir [32],
and in 132La [33, 34]. Recently, the three-dimentional TAC based on the
covariant density functional theory (CDFT) has been developed and applied
for the multiple chirality in 106Rh [35].

As the mean-field approximation gives only the energy minimum, TAC
calculations could not provide the energy spectra for the partner band, as
well as the characteristic pattern for electromagnetic transitions. In order
to describe these results, one has to go beyond mean field by random-phase-
approximation (RPA) or collective Hamiltonian calculations, e.g., TAC+
RPA description for the chiral vibration in the A ∼ 130 region [36]. However,
the RPA does not work for static chirality as it only deals with oscillations
with small amplitudes. The large amplitude collective modes of angular
momentum in the intrinsic frame can be taken into account by the collective
Hamiltonian [37,38]. Although, so far, it is based on the simplest version of
TAC, it is promising to combine with the microscopic TAC in future.

Although TAC calculations have achieved great success in the studies
of chiral doublet bands, they suffer from the broken rotational symmetry,
as well as the semi-classical approximation. While the rotational symmetry
is conserved in the PRM, it has the disadvantage on the assumption of a
core, and the relevant parameters. Therefore, it is natural to seek for new
tools for chiral doublet bands. The angular momentum projection approach
[39] seems to be a good candidate. It can be based on fully microscopic
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mean field and with the broken rotational symmetry restored by projection.
The angular momentum projection approach has been combined with the
Nilsson+BCS method [40] and the energy density functionals such as Skyrme
[41], Gogny [42, 43], as well as the CDFT [44, 45]. It also gives satisfactory
descriptions to various excitation phenomenon in deformed nuclei, including
the back-bending, the β- and γ-vibrations, the high-K isomers. A recent
review can be found in Ref. [46].

As an implementation of the angular momentum projection approach,
the projected shell model [40] has been applied to triaxial nuclei with un-
paired quasiparticles [47–50], and attempts for understanding the chiral dou-
blet bands have been made [49,50]. Although satisfactory description for the
data are obtained, it is found challenging to extract the angular momentum
geometry in the intrinsic frame.

In the PRM description, the angular momentum geometry can be il-
lustrated in terms of the so-called K-distribution, which gives distributions
of the components of the angular momentum on the three intrinsic axes
obtained immediately from the PRM wave functions. This is not the case
for the angular momentum projection, as the projected basis forms a non-
orthogonal set. In the TAC calculations, the angular momentum geometry
is given explicitly by the tilted angles, which are the polar angle and the
azimuthal angle of the angular momentum in the intrinsic frame. The tilted
angles have never been discussed with the angular momentum projected
descriptions, as the wave functions in this case are defined in the labora-
tory frame. Therefore, the illustration of the chiral geometry in the angular
momentum projection approach remains an open problem.

In this work, we present the chiral geometry within the framework of the
angular momentum projection approach reported in Ref. [51]. By K-Plot
and Azimuthal-Plot, the angular momentum geometry can be extracted from
the angular momentum projected wave functions, by which the chirality is
shown explicitly. The typical chiral doublet bands in 128Cs [14] are investi-
gated here as an example.

2. Sketch of the model

The starting point is the standard pairing-plus-quadrupole Hamiltonian
[39]

Ĥ = Ĥ0 −
χ

2

2∑
µ=−2

Q̂+
µ Q̂µ −GM P̂+P̂ −GQ

2∑
µ=−2

P̂+
µ P̂µ , (1)

which includes the spherical single-particle HamiltonianH0, the quadrupole–
quadrupole interaction, the monopole pairing and the quadrupole pairing.
The parameters, including the strengths of the spin-orbit terms and the
two-body interactions, are taken from Ref. [47].
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The intrinsic state |Φν0π0〉 for odd–odd nuclei is a two-quasiparticle state
on an even–even vacuum |Φ0〉

|Φν0π0〉 = β+
ν0β

+
π0 |Φ0〉 , (2)

in which ν0 and π0 represent orbitals occupied by the unpaired neutron and
proton, respectively, and β+

ν0 , β
+
π0 are the corresponding quasiparticle cre-

ation operators. The even–even vacuum |Φ0〉 and its corresponding set of
quasiparticle operators {β+

ν , β
+
π } are obtained from the variational calcula-

tion
δ〈Φν0π0 |Ĥ − λnN̂ − λpẐ − λq0Q̂0 − λq2Q̂2|Φν0π0〉 = 0 . (3)

In Eq. (3), the Lagrange multipliers λn and λp are determined by the con-
straint on the particle numbers, while λq0 and λq2 are determined by the
deformation parameters β and γ. For 128Cs, the quadrupole deformations
constrained are β = 0.2 and γ = 30◦, which is close to those in Ref. [47]
and the results of the CDFT calculation [21]. We block the fourth single-
particle orbital in the νh11/2 subshell, and the lowest single-particle or-
bital in the πh11/2 subshell. The intrinsic space is spanned by the states
|Φκ〉 ∈ {|Φν0π0〉, |Φν0π̄0〉, |Φν̄0π0〉, |Φν̄0π̄0〉}, where ν̄0 and π̄0 denote the time-
reversal conjugates of ν0 and π0.

The projected states{
P̂ IMK |ΦN,Z,κ〉

}
≡
{
P̂ IMK P̂

N P̂Z |Φκ〉
}

(4)

form the basis on which the wave function is expanded

|ΨIM 〉=
∑
K,κ

f IK,κP̂
I
MK |ΦN,Z,κ〉=

∑
K,κ

f IK,κ
2I + 1

8π2

∫
dΩDI∗

MK(Ω)R̂(Ω)|ΦN,Z,κ〉 .

(5)
The expanding coefficients f IK,κ and the eigen-energies EI in Eq. (5) are
determined by the Hill–Wheeler equation∑
K′κ′

(
〈ΦN,Z,κ|ĤP̂ IKK′ |ΦN,Z,κ′〉 − EI〈ΦN,Z,κ|P̂ IKK′ |ΦN,Z,κ′〉

)
f IK′κ′ = 0 . (6)

The calculated energy spectra and the electromagnetic transition prob-
abilities for the chiral doublet bands in 128Cs are in a good agreement with
the data, the details can be found in Ref. [51].

3. K-Plot

The orientation of the angular momentum can be illustrated by the so-
calledK-Plot, which gives the distributions of the components of the angular
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momentum on the three intrinsic axes. The quantity K in the projected
wave function (5) represents the component of the angular momentum on
the intrinsic 3 axis [40]. The 3 axis is the long (l-) axis with the triaxial
deformation γ taken from the sextant γ ∈ [0◦, 60◦], and it could become
the short (s-) axis and the intermediate (i-) axis with γ ∈ [120◦, 180◦] and
γ ∈ [240◦, 300◦], respectively. Therefore, the distributions of Kl, Ks and
Ki can be calculated from the wave function (5) by taking γ values from
different sextants.

The K-distributions are obtained by regarding {K,κ} in the wave func-
tion (5) as generator coordinates. The details can be found in Ref. [51].

The K-Plots for spins I = 10, 12, 14, 16, 18 ~ are shown in Fig. 1, in
which the evolution of the angular momentum geometry with spin is shown.
At I = 10 ~, the peak of the Ki-distribution appears at Ki ∼ 1 ~ for band
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Fig. 1. (Color online) K-Plots for the angular momentum on the short (s-), inter-
mediate (i-) and long (l-) axes, calculated for I = 10, 12, 14, 16, 18 ~.
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A, which is small compared to the peak values of Ks and Kl. This means
that for band A, the angular momentum stays within the s–l plane. For
band B, the peak value of Kl appears at Kl ∼ 2 ~, which is also small
compared to those of Ks and Ki, suggesting a planar rotation within the s–i
plane. Therefore, the K-Plots at I = 10 ~ show that both bands stay mainly
within a principle plane with possible chiral vibration near the band head.

At I = 12, 14 ~, the maximum probability forKi moves to largerK values
for band A, which means that the angular momentum begins to deviate from
the s–l plane, i.e. the aplanar rotation takes place. For band B, the maximum
probability for Kl also move to larger K values, which suggests the deviation
of the angular momentum from the s–i plane. Therefore, it is shown that
with the increase of spin, aplanar rotation develops in both bands. The
chiral symmetry breaks spontaneously, which is recognized as static chirality.
The small finite probabilities for Ki ∼ 0 and Kl ∼ 0 reflect the tunneling
between the left- and right-handed configurations, which correspond to the
energy separation between the near degenerating doublets.

For I > 14 ~, the most probable value for Ki increase with spin for
band A, while those for Ks and Kl almost stay constant. This suggests that
the total angular momentum moves towards the i-axis as spin increases, by
which the static chirality begins to disappear, while the tendency of principle
axis rotation develops. Similar trend also exists for band B, which is not as
significant as for band A.

4. Azimuthal-Plot

The chiral geometry in the intrinsic frame can also be illustrated by the
so-called Azimuthal-Plot, which gives the distributions of the tilted angles
(θ, φ) of the angular momentum. The tilted angles (θ, φ) are the polar angle
and the azimuthal angle of the angular momentum in the intrinsic frame,
respectively. As shown in Ref. [51], the tilted angles can be connected to
the Euler angles {ψ′, θ′, φ′}

θ = θ′ , φ = π − φ′ , (7)

if the z-axis of the laboratory frame is chosen parallel to the angular mo-
mentum. Therefore, the distribution of the tilted angles can be obtained
from those of the Euler angles. The details have been given in Ref. [51].

The calculated Azimuthal-Plots are shown for I = 10, 12, 14, 16, 18 ~ in
Fig. 2, from which one finds similar evolution of the angular momentum
geometry to the K-Plots discussed above. For I = 10 ~, the maximum prob-
ability appears at φ = 90◦ for band A, which corresponds to the s–l plane.
The maximum probability for band B appears at θ = 90◦, corresponding to
the s–i plane. Therefore, the planar natural of rotation is confirmed by the
Azimuthal-Plots at I = 10 ~.
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Fig. 2. (Color online) Azimuthal-Plots calculated at I = 10, 12, 14, 16, 18 ~.

For I = 12, 14 ~, the peak found for band A at I = 10 ~ splits into two,
with their positions deviate from φ = 90◦, corresponding to the onset of
aplanar rotation. The peaks for band B also move from θ = 90◦ to smaller θ
values, which corresponds to aplanar orientations. The existence of the apla-
nar rotation in both bands demonstrates the occurrence of static chirality.
The tunneling between the left- and right-handed configurations is reflected
by the non-vanishing probabilities for either (θ = 90◦, φ = 0◦) and (θ = 90◦,
φ = 180◦).

For higher spins, the peaks for band A move towards (θ = 90◦, φ = 90◦),
which corresponds to the i-axis, and the distribution becomes more and more
concentrated. This corresponds to the tendency of principle axis rotation
mentioned in the discussion of the K-Plots. The tendency is less significant
for band B in which aplanar rotation remains until I = 18 ~. However, the
peaks for band B also get close to θ = 90◦ which corresponds to the s–i
plane, and its chirality is expected to disappear at even higher spins.

5. Summary and outlook

In this contribution, the angular momentum geometry in the intrinsic
frame is extracted from the angular momentum projected wave functions
in the laboratory frame with the K-Plots and the Azimuthal-Plots, which
give the distributions of the components and the tilted angles of the angu-
lar momentum with respect to the three principle axes, respectively. The
K-Plots and the Azimuthal-Plots are shown for the chiral doublet bands in
128Cs, which are described by the angular momentum projection approach
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based on the pairing-plus-quadrupole Hamiltonian. The results demonstrate
the occurrence of chiral symmetry breaking for intermediate spins, in accor-
dance with the established picture for the chiral doublet bands. It should
be noted that the angular momentum projection approach used here could
be combined with state-of-art mean-field descriptions, such as the energy
density functionals, which enable the systematic description to chiral bands
in various mass regions. The formalism for the K-Plots and the Azimuthal-
Plots can also be applied straightforwardly to other exotic rotating modes
in triaxial nuclei, such as the wobbling mode, to examine the corresponding
angular momentum geometries. Finally, the present study sets an exam-
ple for the model in the laboratory frame to find their connections to the
intuitive pictures proposed in the intrinsic frame.
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