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The algebraic approach which allows for simulation of symmetries of
a nucleus with respect to the laboratory and intrinsic frames is presented.
The formalism is based on the partner groups (a group and the correspond-
ing intrinsic group) idea. An illustrative example is related to the successful
SU(3) Elliot nuclear model. An example of schematic Hamiltonian is chosen
to have tetrahedral or octahedral symmetry.
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1. Introduction

The classical rotation is a well-understood phenomenon in which the
orientation of a body is changing with time. On the other hand, the quantum
rotation allows to determine only the probability of a given orientation of
the “rotating” body and, in fact, the time dependence is not needed. In both
cases, the rotational motion can be described as a motion on the rotation
group manifold (the space of SO(3) group parameters). Usually, in the
case of rotations, this manifold is parametrized by the set of Euler angles
Ω = (Ω1, Ω2, Ω3). The quantum state space for this motion is not the group
manifold itself but the space of square integrable complex functions of Euler
angles denoted by L2(SO(3),dµ(Ω)).

A link between abstract elements of the rotation group and the physical
space of a nucleus is given by their action on the nuclear state space (they
rotate nuclear states). On the other hand, one can consider two kinds of in-
dependent actions of the rotation group in the state space L2(SO(3),dµ(Ω))
— the left action and the right action. A practical description of these
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actions was introduced in the textbook [2]. The left action is related to the
laboratory frame and the corresponding properties of the physical system.
The left action operators are “rotations” R(Ω) ∈ SO(3) of a nucleus with
respect to the laboratory frame. The right action is related to the intrinsic
properties of the physical system under consideration. The right action op-
erators furnish the intrinsic rotation group denoted by SO(3). We call the
group SO(3) the partner group of the group SO(3) and vice versa.

The general definition of the intrinsic (partner) group G for the group G
can be found in [2]. For the completeness of our text, we sketch this idea be-
low.

For each element g of the group G, one can define a corresponding op-
erator ḡ in the linear group space LG as

ḡ|S〉 = |Sg〉 , for all |S〉 ∈ LG , (1)

where the linear group space LG is defined as the linear space spanned by
all possible formal linear combinations of the group elements

LG = {|S〉 : |S〉 =
∑
g∈G

cgg , where cg ∈ C} . (2)

The group formed by the collection of the operators ḡ is called the intrinsic
group G related to the group G. The pair G and G are called partner groups.
One of the most important properties of the intrinsic group G is that this
group commutes with its partner G[

G,G
]

= 0 . (3)

The groups G and G are anti-isomorphic. This property implies that the
partner groups G and G have similar algebraic structure and as a conse-
quence representations, decompositions of the Kronecker products, Clebsch–
Gordan coefficients etc.

2. Partner groups formalism

To explain the idea of the partner groups formalism, we follow the con-
cept of the generalized rotor. The generalized quantum rotor is an extension
of the standard second order rotor. It was used extensively with a great
success in molecular physics [3–7] and later on developed, but not fully ex-
ploited, in nuclear physics [8–17].

The second order rotor Hamiltonian H(2)
rot is always expressed in terms of

generators of the intrinsic group SO(3), the partner group to SO(3). These
generators are interpreted as angular momentum operators with respect to
the intrinsic (rotating) frame [1]
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H
(2)
rot (Jx, Jy, Jz) =

J̄ 2
x

2Jx
+

J̄ 2
y

2Jy
+

J̄ 2
z

2Jz
. (4)

The Cartesian form of this rotational Hamiltonian can be rewritten in a
tensor form which is more convenient for its generalization

H
(2)
rot

(
J̄−1, J̄0, J̄+1

)
= h0

0T̄
0
0 + h2

0T̄
2
0 + h2

2

(
T̄ 2

2 + T̄ 2
−2

)
, (5)

where the coupling constants are functions of the inertia parameters Jx,
Jy, Jz

h0
0 =

1

2
√

3

(
1

Jx
+

1

Jy
+

1

Jz

)
, h2

0 =
1√
6

(
1

Jz
− 1

2Jx
+

1

2Jy

)
,

h2
2 =

1

4

(
1

Jx
− 1

Jy

)
(6)

and the appropriate tensors are defined as T̄ λµ = (J̄ ⊗ J̄)λµ.
The generalized rotor model allows to simulate rotation-like motions with

higher symmetries than those allowed for the standard second order rotor
Hamiltonian. In this model, the Hamiltonian is a more complicated func-
tion of the laboratory and intrinsic components of the angular momentum
operators (Jx, Jy, Jz) and (J̄x, J̄y, J̄z), respectively,

Hrot = Hrot

(
Jx, Jy, Jz, J̄x, J̄y, J̄z

)
=
∞∑
λ=0

+λ∑
µ=−λ

(
hλµ
(
J2
)
T λµ + h′λµ

(
J2
)
T̄ λµ

)
.

(7)
From the hermiticity condition of the Hamiltonian, one gets hλ−µ = (−1)µhλ?µ
(the same for h′λµ coefficient). The spherical laboratory (intrinsic) tensor
operators T λµ (T̄ λµ ) are built from the components of the laboratory (intrinsic)
angular momentum operators

T λµ =
((

(J ⊗ J)2 ⊗ J
)3 · · · ⊗ J)λ

µ
, T̄ λµ =

((
(J̄ ⊗ J̄)2 ⊗ J̄

)3 · · · ⊗ J̄)λ
µ
.

(8)
One needs to remember that the laboratory and intrinsic angular momentum
operators form the sets of generators of the partner rotation groups SO(3)
and SO(3), respectively. The configuration space for rotational motion is
identified with the rotation group manifold SO(3) usually parameterized
by three Euler angles Ω = (Ω1, Ω2, Ω3). The Hilbert space of quantum
states for the generalized rotor is the space of square integrable functions
on the rotation group (the Euler angles are arguments of these functions),
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KSO(3) = L2(SO(3),dµ(Ω)), with the scalar product generated by the SO(3)
invariant Haar measure

〈ψ2|ψ1〉 =

∫
SO(3)

dµ(Ω)ψ2(Ω)?ψ1(Ω)

=
1

8π2

2π∫
0

dΩ1

π∫
0

dΩ2 sinΩ2

2π∫
0

dΩ3 ψ2(Ω)?ψ1(Ω) . (9)

The commutation relation (3) among the elements of the partner groups im-
plies that the corresponding generators also commute [Jk, J̄l] = 0. It means
that the partner generators Jk and J̄l act on the state space K independently.
The Peter–Weyl theorem [18] introduces the orthonormal basis in the states
space K as a set of Wigner functions rJMK(Ω) =

√
2J + 1DJ

MK(Ω)
?.

3. SU(3) × SU(3) model with point symmetries

Using overgroup of rotational group of motion G ⊃ SO(3) allows for
the introduction of additional degrees of freedom. The G = SU(3) nuclear
model, which introduces the quadrupole–quadrupole separable interaction,
is a simple but successful model [19, 20, 22–24]. Within the model of part-
ner groups, it can be considered as an extension of the generalized rotor
model. In addition to the rotational, it introduces the quadrupole degrees
of freedom.

The partner groups SU(3) and SU(3) allow for the analysis of additional
symmetries, point symmetries for example, within the nuclear SU(3) model.

Let us assume that the nuclear SU(3) group is generated by three spher-
ical (cyclic) components of the angular momentum operator Lµ(θ), µ=−1,
0,+1, and five components of the quadrupole tensor operator Qν(θ), ν =
−2,−1, 0,+1,+2, where θ = (θ1, θ2, . . . , θ8) parametrizes elements of this
group. In the following, for simplicity of notation, we do not write the
dependence of generators on θ.

The transformation of generators from the group SU(3) to the intrinsic
group SU(3) (the transformation among the generators between the partner
groups) can be obtain in a compact form as

X̄µ =

8∑
µ′=1

∆
(Γ0)
µ′µ (θ)Xµ′ , (10)

where Lµ = Xµ+2, µ = −1, 0, 1, Qν = Xν+6, ν = −2, . . . , 2 and ∆(Γ0)(θ)
are matrices of the appropriate eight-dimensional irreducible representa-
tion equivalent to the adjoint representation of the nuclear SU(3) group.
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Here, the generators {L̄µ} are mixtures of the angular momentum L and
the quadrupole Q operators, and cannot be interpreted as the angular mo-
mentum operator of the nucleus. The same remark concerns the intrinsic
quadrupole operator {Q̄µ}. The intrinsic generators fulfill the commutation
relations for the group SU(3), which are very similar to those obtained by
Elliot [23] [

L̄µ, L̄ν
]

= +
√

2 (1µ1ν|1µ+ ν)L̄µ+ν , (11)[
Q̄µ, L̄ν

]
= +

√
6 (1µ2ν|2µ+ ν)Q̄µ+ν , (12)[

Q̄µ, Q̄ν
]

= −3
√

10 (2µ2ν|1µ+ ν)Lµ+ν , (13)[
Lµ, L̄ν

]
=
[
Qµ, Q̄ν

]
= 0 , (14)[

Lµ, Q̄ν
]

=
[
Qµ, L̄ν

]
= 0 , (15)

however, they differ by signs. The opposite sign in the commutation relations
for the generators of the intrinsic groups is their characteristic feature.

In the past decade, the problem of existence of higher point symmetries in
nuclei has been extensively investigated [25]. Usually, the point symmetries
were related to shapes of nuclei and indirectly to their effective Hamiltonian.
The geometrical interpretation is also supported for the generalized rotor.
In this case, the transformation to the intrinsic group can be considered as
the transformation to the rotating (intrinsic) frame. They are rigid-body
transformations, i.e., they do not change the shape of the body.

This is not the case in the SU(3) × SU(3) partner groups model. How-
ever, this model allows for the investigation of the influence of the point
symmetries within the nuclear SU(3) approximation.

As an example, we consider the tetrahedral symmetry. The intrinsic
Hamiltonian with a tetrahedral symmetry, different than the Hamiltonian of
the generalized rotor, can be obtained as a sum of Hamiltonians constructed
from the generators of SU(3), generators of SU(3), and potentially the term
describing coupling among them

H
(
Q,L, Q̄, L̄

)
= H ′(L,Q) +H ′′

(
L̄, Q̄

)
+ V

(
L,Q, L̄, Q̄

)
. (16)

Because the Hamiltonian H has to be invariant with respect to the rota-
tion group SO(3), the sub-Hamiltonian H ′(L,Q) has also to be rotationally
invariant, i.e., SO(3) ⊆ Sym(H ′(L,Q)), where Sym(H) denotes the symme-
try group of the operator H. Using this notation, we can summarize the re-
quired symmetry properties: SO(3) ⊆ Sym(H), SO(3) ⊆ Sym(H ′), SO(3) ⊆
Sym(V ) and Sym(H ′′) ⊆ SU(3). The simplest V = 0 model Hamiltonian
(16), having the required rotational symmetry, consists of the quadrupole–
quadrupole interaction, the rotational term and other terms constructed
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from generators of the partner intrinsic group. The sub-Hamiltonian H ′

used in the nuclear SU(3) model can be written as

H ′ = γC2(SU(3))− κQ ·Q+ βL · L
= (γ − κ)C2(SU(3)) + (3κ+ β)L2 , (17)

where the second order Casimir operator

C2(SU(3)) = Q ·Q+ 3L · L . (18)

The eigenvalues of the Casimir operator are C2(λ, µ) = 4(λ2 + µ2 + λµ +
3λ+ 3µ), where (λ, µ) labels the irreducible representation of SU(3) [20].

This implies the eigenvalues of H ′ to be E′(λ, µ) = (γ − κ)C2(λ, µ) +
(3κ+ β)L(L+ 1).

The second part consists of tetrahedral or octahedral invariants. Exam-
ples of such invariants are listed below

H ′′3Q = h3Q

((
Q̄⊗ Q̄

)3
2
−
(
Q̄⊗ Q̄

)3
−2

)
, (19)

H ′′3LQ = h3LQ

((
L̄⊗ Q̄

)3
2
−
(
L̄⊗ Q̄

)3
−2

)
, (20)

H ′′4Q = h4Q

(√
14

5

(
Q̄⊗ Q̄

)4
0

+
(
Q̄⊗ Q̄

)4
−4

+
(
Q̄⊗ Q̄

)4
4

)
. (21)

As an example, we choose the tetrahedral (octahedral) H ′′4Q “quadrupole–
quadrupole”-type interaction. We call it the tetrahedral (octahedral) sym-
metry because H = H ′ + H ′′4Q is invariant with respect to spatial inversion
and both isomorphic groups Td and O cannot be distinguished. The tetra-
hedral and octahedral groups commute with the Hamiltonian, i.e., they are
its symmetry groups. To distinguish between both symmetry possibilities,
one needs to know the transformation properties of states with respect to
the space inversion (parity quantum numbers). This is dependent on the in-
terpretation of parameters of the nuclear SU(3). We postpone the discussion
of this problem to the upcoming paper.

Because the Clebsh–Gordan coefficients of the rotation group for the
maximal and minimal projections are equal to 1, the term breaking SU(3)
symmetry can be rewritten as

H ′′4Q = h4Q

(√
14

5

(
Q̄⊗ Q̄

)4
0

+
(
Q̄2

)2
+
(
Q̄−2

)2)
. (22)

The coupling constant h4Q is here a real number which follows from the
hermiticity requirement for Hamiltonians.
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For calculations, we adopt the construction of the basis proposed in [26]
and [27]. For the case of our partner groups, the corresponding basis is
labelled with 8 quantum numbers

r
(λ,µ)

fiLM ;f̄iL̄M̄
(θ) =

√
dim(λ, µ)∆

(λ,µ) ?

fiLM ;f̄iL̄M̄
(θ) , (23)

where ∆(λ,µ) ?

fiLM ;f̄iL̄M̄
(θ) are matrix elements (Wigner functions) of irreducible

representation (λ, µ) of the group SU(3). One needs to note that the quan-
tum numbers (λ, µ) label the irreducible representations of partner groups;
these labels are related to the main invariants common for both groups. The
first set of quantum numbers L,M describes the angular momentum and its
projection in the laboratory frame. The corresponding pseudo-angular mo-
menta L̄, M̄ have the same properties as true angular momenta but they are
observables independent of L,M . The quantum numbers fi and f̄i distin-
guish equivalent irreducible representations of the groups SO(3) and SO(3)
in the chains SU(3) ⊃ SO(3) and SU(3) ⊃ SO(3), respectively.

Fig. 1. Example of spectrum of Hamiltonian (24) for γ′ = 1.5. The pair (λ, µ) labels
the irreducible representations of the group SU(3) and the label (n), where n =

1, 2, 3 denote degeneration of eigenvalues due to the intrinsic tetrahedral/octahedral
symmetry.
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The most interesting part of the spectrum of the Hamiltonian H is now
the intrinsic interaction term. To show the effect of this term on the energy
spectrum, the eigenvalues H for L = 0,

H/h4Q = γ′C2(SU(3)) +H ′′4Q/h4Q , (24)

are presented in Fig. 1. For L > 0, an additional rotational structure L(L+1)
is superimposed. This spectrum is calculated for the irreducible representa-
tions (λ, µ) = {(0, 0), (1, 0), (2, 0), (2, 1)}. This Hamiltonian has the symme-
try represented by the group SU(3)×Td. The energy levels belonging to the
representations (λ, µ) ∈ {(0, 0), (1, 0)} of the group SU(3) are not affected
by this type of tetrahedral (or octahedral) interaction. However, the higher
energy levels, belonging to the representations (λ, µ) ∈ {(2, 0), (2, 1)}, are
split by the H ′′4Q interaction. In Fig. 1, the label (n) denotes the dimen-
sions of the irreducible representations of either Td or O. As usually, these
numbers are equal to the degenerations of the corresponding energy levels.

4. Conclusions

The formalism of partner groups allows for simulation of the intrinsic
properties of quantum systems (also nuclei), including their intrinsic sym-
metries. In the example shown in this paper, the nuclear SU(3) model is
extended and allows for additional intrinsic structure, especially it allows to
construct terms having required point symmetries. Molecular and nuclear
physics are typical fields in which this type of models can be applied. It
is a well-defined algebraic model which without very complicated and time-
consuming calculations is able to reproduce energy spectra and transition
amplitudes of some molecules and nuclei with given symmetries.

The highest symmetry of the Hamiltonian constructed within the part-
ner groups model cannot be larger than the product of both groups. Such
a Hamiltonian consists of two Casimir operators of both partner groups. In
addition, these Hamiltonians should be invariant with respect to the gen-
erally required symmetries. These symmetries are dependent on a physical
problem. In nuclear physics usually the rotational symmetry is required.

The partner groups approach is an interesting project allowing for the
construction of algebraic nuclear models in which full power of the group
theory methods can be used.

The work was partially funded by the RFBR (grants Nos. 16-01-00080
and 17-51-44003 Mong), the Bogoliubov–Infeld program and the RUDN Uni-
versity Program 5-100.
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