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We present a description of Wheeler’s delayed choice experiment. Un-
like the usual approach, we concentrate on the possible time structure of the
process. We stress that both the test particle and the apparatus have non-
trivial temporal parts of their wave functions, which opens a new channel
of interaction. Our calculations show that the temporal overlap between
the quantum states is enough to account for the observed results. The
description is based on the formalism of the projection time evolution.
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1. Time in physical models and the delayed choice experiments

Almost all physical models treat time as a kind of background. We either
assume that time is not needed to describe the physical system or that it is
easily accessible and common for each of the subsystems. The only exception
is the theory of general relativity which rests on the assumption that time is
a coordinate. Being the fourth dimension, it forms, together with the three
spatial coordinates, the space-time.

Even though the relativistic approach is well-established, it is not easy
to incorporate its ideas in other models. Traditional quantum mechanics is
a good example of a theory within which time cannot be described unless
one rewrites it as a relativistic field theory. The difficulty was pointed out
by Pauli who showed [1] that a self-adjoint time operator, canonically con-
jugate with the Hamiltonian H, should have a continuous spectrum even
for discrete or semibounded H. He concluded that there is no possibility
to build the time operator, hence time in quantum mechanics cannot be
an observable. The assumptions used by Pauli are now believed to be too
strong (see, e.g., [2]) and work was done in order to consistently describe
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the time evolution of quantum systems [3,4]. This research is in compliance
with some of the experiments which suggest that quantum objects are not
only extended in space, but also in time [5].

Let us assume that a particle has to penetrate a barrier, with both of
these objects being extended in space and time. An example profile of
such a barrier, consisting of Gauss functions in the x and t directions, is
shown in Fig. 1. The t = 0 path leads through the highest value of the
blocking potential, but for a time-extended particle, the preferred path may
cross the barrier at slightly “earlier” or “later” times, like t = ±1. This
is, of course, impossible if we analyze the situation on infinitely thin time
slices, i.e., we travel in time without moving from t = 0. Unfortunately,
both the theoretical and experimental research on the time structure of the
elementary processes is difficult.
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Fig. 1. An example profile of a space-time extended barrier in two dimensions. The
preferred way of penetrating the barrier may lead through t 6= 0 paths. (Arbitrary
units.)

One of the characteristic features of the quantum theory is that every
object is represented by its wave function ψ and as a wave it is spatially
extended. This spatial delocalization implies the possibility of detecting the
particle in different places of the experimental setup. To prove it, the so-
called delayed-choice experiments have been proposed and conducted. The
main idea of such an experiment assumes that alterations to the experimental
setup are introduced after the particle has (classically) passed this part of
the apparatus. The question was: will the particle’s quantum state change
according to the alterations despite the fact that they should be causally
disconnected? The answer was always positive and the explanation was
always based on the fact that the particle’s wave function ψ must have been
spatially wide enough to “see” the setup change. A consistent approach
should, however, take into account also the spread of ψ in the time direction
and the possibility of interaction with the setup via this channel. We present
such a description in the next section.
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2. The Wheeler’s Gedankenexperiment

In 1978, Wheeler proposed a delayed choice Gedankenexperiment [6].
This idea was realized experimentally [7] confirming that the particle re-
spected the changes made to the setup.

Wheeler proposed to use a Mach–Zender interferometer, depicted in the
left panel of Fig. 2, in which the second beamsplitter (BS2) can be inserted
or removed in the region X after the particle has moved past the first beam-
splitter (BS1). In the case the region X is empty during this experiment, the
particle should behave classically — it will go either along the 1 or 2 path,
directed randomly by the 50/50 BS1. If there is a second beamsplitter in X,
the particle will travel between BS1 and BS2 along both ways, and there
will be an interference between these two states in BS2. Both situations
can be distinguished by looking at the outcome from the detectors. What
will happen, however, if BS2 is inserted or removed after the particle passes
BS1? Will the particle change its state before it reaches one of the detec-
tors? The experimental verification showed that the particle indeed changes
its behavior according to the changes introduced in the setup.
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Fig. 2. Left: Wheeler’s delayed choice experiment setup. BS1 is a 50/50 beamsplit-
ter, the mirrors are 100% reflective. The region X may be influenced by inserting
and removing a second beamsplitter (BS2) from it. Right: The geometrical scheme
of the setup. γs denote two possible entrance channels, L1 and L2 are the mirrors,
and D1 and D2 denote the detectors.

Let us now describe Wheeler’s experiment focusing on the temporal part.
We represent the particle’s state by its density matrix ρ(τ, ν), where ν is a set
of quantum numbers and τ numbers the subsequent steps of the evolution
of ρ. The parameter τ should not be mistaken with time, as it is not a phys-
ical quantity but merely a counter that labels the steps of the evolution

ρ(τ0, ν0)→ ρ(τ1, ν1)→ · · · → ρ(τn, νn) . (1)

The evolution itself is driven by the family of operators E| such that if the
initial density matrix is ρ(τ0, ν0), the subsequent states are constructed in
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the following way [4]:

ρ(τ1, ν1) =
E|1ρ(τ0, ν0)E|

†
1

Tr
[
E|1ρ(τ0, ν0)E|

†
1

] , (2)
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†
2

Tr
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†
2
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†
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†
1 . . .E|

†
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Tr
[
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†
1 . . .E|

†
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] . (4)

Here, the denominators are normalization factors. As one can see, the evo-
lution of the quantum state may be realized by projections of the previous
state onto the space of all possible new states, with E| being the projection
operators. This procedure introduces randomness in the choice of the next
state. With the specific choice of the E| operators, the unitary Schrödinger
as well as the Dirac and Klein–Gordon evolutions can be obtained. For the
particle’s initial wave function ψ,

ψ(x) = ψ
(
x0, ~x

)
= ξ

(
x0
)
η (~x ) , (5)

the density matrix reads ρ(τ0, ν0) = |ψ〉〈ψ|.
Our problem is three-dimensional, with two spatial coordinates x1 and x2,

and one time coordinate x0 (see Fig. 2, right panel). Without the loss of gen-
erality, we assume that the whole setup is geometrically symmetric, which
means that it takes the particle the same time to move through each seg-
ment of the setup. We denote this time by T0 and we expect the particle to
appear in the detectors around the time 3T0.

The evolution operator representing the 50/50 beamsplitter, neglecting
all possible phase changes, should randomly choose one of the two outputs,
creating in the quantum case an output state in the form of an interference
between both channels. The operator is assumed to act on the spatial part
of the density matrix only and reads

M =
1√
2

(
1 −1
1 1

)
. (6)

Unlike the original proposition, we assume that BS2 is always present but
we can manipulate the BS1, which is further away from the detectors. Each
beamsplitter can either be missed, in which case the particle leaves the setup
and does not reach any of the detectors, or hit. In the latter case, the particle
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is being transmitted or reflected, both with 50% probability. We introduce
functions ψ(γ)

m (x) which describe all possible situations

ψ
(1)
1 (x) = 0 , (7)

ψ
(1)
2 (x) = 0 , (8)

ψ
(2)
3 (x) = 0 , (9)

ψ
(γ)
4 (x) =

ND√
2

[
1− χBT1 +3T0

(t)
]
ξ(t− 3T0) ηDxγ (~x ) , (10)

ψ
(γ)
5 (x) =

ND

2
χBT1 +3T0

(t) ξ(t− 3T0) ηDxγ (~x ) , (11)

ψ
(γ)
6 (x) = (−1)γND

2
χBT1 +3T0

(t) ξ(t− 3T0) ηDxγ (~x ) , (12)

where ND are the normalization factors and χα(t) denotes the projection
on the time interval α. In our case, BT

1 is the time interval in which BS1 is
present. Discretizing time t = nδT , with n ∈ Z, and denoting by Dγn the
space-time interval occupied by the detector Dγ, the probability pev(γ, n)
of detecting the particle by the γ detector in the time interval n is given by

pev(γ, n) =
1

N

∫
Dγn

d3x

∣∣∣∣∣
6∑

m=1

ψ(γ)
m (x)

∣∣∣∣∣
2

, (13)

N =
∞∑

n=−∞

∑
γ=1,2

∫
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d3x

∣∣∣∣∣
6∑

m=1

ψ(γ)
m (x)

∣∣∣∣∣
2

. (14)

Using (7)–(12), the general formula can be rewritten as

pev(γ, n) =
1

2

(n+ 1
2)δT∫

(n− 1
2)δT

dt
[
1 + (−1)γχBT1 +3T0

(t)
]
|ξ(t− 3T0)|2 . (15)

One sees that due to assumption (5) about the separability of the wave
function, the spatial part does not play any role in our description, with the
interference taking place in the time domain only.

As an example, let us assume that the temporal part of the photon has
the form of a Gauss function. In the first case (Fig. 3), the photon interacts
with BS1. The superposition of states going along the γ = 1 and γ = 2
paths reaches BS2 and interferes destructively (constructively) in the D1
(D2) direction. The maximum detection probability is at n = 15, which
numerically corresponds to the time 3T0.
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Fig. 3. BS1 has a time overlap with the photon. Both beamsplitters work creating
a constructive interference in D2 and a destructive one in D1.

The second case shows the situation in which the photon does not in-
teract with BS1 due to the lack of an overlap between the time intervals
occupied by the particle and the beamsplitter. The only interaction comes
from BS2, which uniformly distributes the photon to both detectors. Two
equal probability distributions can be seen in Fig. 4.
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Fig. 4. BS1 has no time overlap with the photon. Only BS2 works redirecting the
photon to both detectors.

Figure 5 presents a situation in which the photon’s wave function is wide
in the temporal direction. BS1 is being switched on for a short period. The
shape of the probability distributions clearly shows that the photon changes
its state, reacting to the manipulations with BS1.
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Fig. 5. The photon occupies a wide time interval, BS1 is switched on for a short
period. The change of photon’s behavior is readily visible.
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