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We compare the characteristics of the charged-current quasielastic neu-
trino and antineutrino scattering obtained in two different nuclear models,
the phenomenological SuperScaling Approximation and the model using
a realistic spectral function S(p, E) that gives a scaling function in accor-
dance with the (e, e′) scattering data, with the recent data published by the
MINERνA Collaboration. The spectral function accounts for the nucleon–
nucleon (NN) correlations by using natural orbitals from the Jastrow corre-
lation method and has a realistic energy dependence. Both models provide
a good description of the data without the need of an ad hoc increase of
the value of the mass parameter in the axial-vector dipole form factor.
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1. Introduction

The MINERνA Collaboration has recently measured differential cross
sections for neutrino and antineutrino charged-current quasielastic (CCQE)
∗ Presented at the XXIV Nuclear Physics Workshop “Marie and Pierre Curie”,
Kazimierz Dolny, Poland, September 20–24, 2017.
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scattering on a hydrocarbon target [1, 2]. “Quasielastic” events are defined,
in this case, as containing no mesons in the final state. The beam energy
goes from 1.5 to 10 GeV and is peaked at Eν ∼ 3.5 GeV. At lower energies
Eν ∼ 0.8 GeV, the MiniBooNE experiment has reported [3] CCQE cross
sections that are higher than most theoretical predictions based on the im-
pulse approximation (IA), leading to the suggestion that non-QE processes
induced by two-body currents may play a significant role in this energy
domain [4–7]. These effects have sometimes been simulated, in the Rela-
tivistic Fermi Gas (RFG) framework, by a value of the nucleon axial-vector
dipole mass MA = 1.35 GeV [3], which is significantly larger than the stan-
dard value MA = 1.03 GeV extracted from neutrino–deuterium quasielastic
scattering. On the other hand, higher-energy data from the NOMAD exper-
iment (Eν ∼ 3–100 GeV) [8] are well-accounted for by IA models [9]. The
MINERνA experiment is situated in between these two energy regions and
its interpretation can, therefore, provide valuable information on the long-
standing problem of assessing the role of correlations and meson exchange
currents (MEC) in the nuclear dynamics [10–12].

In this paper, we present results corresponding to two different nuclear
models: the SuSA (SuperScaling Approximation) and the model using a
realistic spectral function S(p, E). Both have been extensively tested against
existing QE electron scattering data over a wide energy range. The detailed
description of these models can be found in our previous work (see, e.g., [13]
and [14,15]). Here, we just summarize their main features.

2. Theoretical scheme and results

SuSA [13] is based on the idea of using electron scattering data to pre-
dict CC neutrino cross sections: a phenomenological “superscaling function”
f(ψ), depending only on one “scaling variable” ψ(q, ω) and embodying the
essential nuclear dynamics, can be extracted from QE longitudinal (e, e′)
data within a fully relativistic framework. This function is then multiplied
by the appropriate charge-changing N → N (n→ p for neutrino and p→ n
for antineutrino scattering) weak interaction cross sections to obtain the
various response functions that contribute to the inclusive neutrino–nucleus
cross section [16]. On the one hand, the model gives a good representation
of the purely nucleonic contributions to the existing QE electron scattering
data, to the extent that the quasielastic scattering can be isolated. On the
other hand, it does not account for the inelastic scattering and MEC which
are mainly seen in the transverse channel. For the former, the SuSA ap-
proach has been successfully extended to higher energies into the non-QE
regime where inelastic contributions dominate [17]. The latter have been
modeled using extensions of the RFG for two-body operators and typically
cause 10–20% scaling violations.
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The second model we consider is the model using a realistic spectral
function S(p, E) that gives a scaling function in accordance with the (e, e′)
scattering data [14, 15]. Within the PWIA (see, e.g., [14, 18] and details
therein), the differential cross section for the (e, e′N) process factorizes in
the form of[

dσ

dε′ dΩ′ dpN dΩN

]PWIA

(e,e′N)

= KσeN (q, ω; p, E , φN )S(p, E) , (2.1)

where σeN is the electron–nucleon cross section for a moving off-shell nu-
cleon, K is a kinematical factor, and S(p, E) is the spectral function giving
the probability to find a nucleon of certain momentum and energy in the
nucleus. In Eq. (2.1), p is the missing momentum and E is the excitation
energy of the residual system. The scaling function can be represented in
the form of

F (q, ω) ∼=
[dσ/dε′ dΩ′](e,e′)

σ̄eN (q, ω; p = |y|, E = 0)
, (2.2)

where the electron–single nucleon cross section σ̄eN is taken at p = |y|,
y being the smallest possible value of p in electron–nucleus scattering for
the smallest possible value of the excitation energy (E = 0). The theoretical
concept of superscaling has been introduced within the relativistic Fermi gas
(RFG) model [19, 20]. In the RFG model, the scaling function fRFG(ψ′) =
kF F has the form [21]

fRFG(ψ′) ' 3
4

(
1− ψ′2

)
θ
(

1− ψ′2
)
. (2.3)

As pointed out in [21], however, the actual dynamical physical reason of the
superscaling is more complex than that provided by the RFG model.

In Ref. [14], more information about the spectral function was extracted
within PWIA from the experimentally known scaling function. It contains
effects beyond the mean-field approximation leading to a realistic energy
dependence and accounts for short-range NN correlations. It is written in
the form of

S(p, E) =
∑
i

2(2ji + 1)ni(p)LΓi(E − Ei) , (2.4)

where the Lorentzian function is used

LΓi(E − Ei) =
1

π

Γi/2

(E − Ei)2 + (Γi/2)2
(2.5)

with Γi being the width of a given s.p. hole state. In the calculations,
we used the values Γ1p = 6 MeV and Γ1s = 20 MeV, which are fixed to



52 M.V. Ivanov et al.

the experimental widths of the 1p and 1s states in 12C [22]. In Eq. (2.4),
the s.p. momentum distributions ni(p) were taken firstly to correspond to
harmonic-oscillator (HO) shell-model s.p. wave functions, and second, to
natural orbitals (NOs) s.p. wave functions ϕα(r) defined in [23] as the com-
plete orthonormal set of s.p. wave functions that diagonalize the one-body
density matrix ρ(r, r′)

ρ
(
r, r′

)
=
∑
α

Nαϕ
∗
α(r)ϕα

(
r′
)
, (2.6)

where the eigenvalues Nα (0 ≤ Nα ≤ 1,
∑

αNα = A) are the natural
occupation numbers. In [14], we used ρ(r, r′) obtained within the lowest-
order approximation of the Jastrow correlation methods [24]. The realistic
spectral function S(p, E) is presented in Fig. 1, where the two shells 1p and
1s are clearly visible.

Fig. 1. The 12C realistic spectral function S(p, E), which is constructed using nat-
ural orbital single-particle momentum distributions from the Jastrow correlation
method and Lorentzian function for the energy dependence.

For accounting for the FSI, we follow the approach given in Ref. [25] con-
cerning two types of FSI effects, the Pauli blocking and the interaction of the
struck nucleon with the spectator system by means of the time-independent
optical potential (OP) U = V − ıW . The latter can be accounted for [26] by
replacing in the PWIA expression for the inclusive electron–nucleus scatter-
ing cross section

dσt
dω d|q|

= 2πα2 |q|
E2

k

∫
dE d3p

St(p, E)

EpEp′
δ
(
ω +M − E − Ep′

)
Lem
µνH

µν
em,t

(2.7)
the energy-conserving delta function by

δ
(
ω +M − E − Ep′

)
→ W/π

W 2 + [ω +M − E − Ep′ − V ]2
. (2.8)
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In Eq. (2.7), the index t denotes the nucleon isospin, Lem
µν and Hµν

em,t are
the leptonic and hadronic tensors, respectively, and St(p, E) is the proton
(neutron) spectral function. The real (V ) and imaginary (W ) parts of the
OP in (2.7) and (2.8) are obtained in Ref. [27] from the Dirac OP.

The CC (anti)neutrino cross section in the target laboratory frame is
given in the form of (see for details [13,28])[

d2σ

dΩ dk′

]
χ

≡ σ0F2
χ , (2.9)

where χ = + for neutrino-induced reaction (e.g., ν` + n → `− + p, where
` = e, µ, τ) and χ = − for antineutrino-induced reactions (e.g., ν̄` + p →
`+ + n). The quantity F2

χ in (2.9) depends on the nuclear structure and is
presented [13] as a generalized Rosenbluth decomposition containing leptonic
factors and five nuclear response functions, namely charge–charge (CC),
charge–longitudinal (CL), longitudinal–longitudinal (LL), vector–transverse
(T) and axial–transverse (T’) expressed by the nuclear tensor and the scaling
function.

To obtain the scaling function, we use the spectral function S(p, E) from
(2.4) with ni(p) corresponding to HO or NOs s.p. wave functions, and the
Lorentzian function (2.5). We calculate the electron-12C cross section by us-
ing Eqs. (2.7) and (2.8), and the scaling function F (q, ω) within the PWIA
from Eq. (2.2). By multiplying F (q, ω) by kF, the scaling function f(ψ′)
is obtained. In this way, the results (Fig. 2) for the HO+FSI (dashed line)
and NO+FSI (dash-dotted line) are obtained. As a reference, there are also
shown the scaling functions in the cases of SuSA (dotted line) and RFG (solid
line). The accounting for FSI leads to a small asymmetry of the scaling func-

Fig. 2. Results for the scaling function f(ψ) for 12C obtained using HO+FSI and
NO+FSI approaches are compared with the RFG and SuSA results, as well as with
the longitudinal experimental data.
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tion. Moreover, we found that the asymmetry in the scaling function gets
larger by using the Lorentzian function [Eq. (2.5)] for the energy dependence
of the spectral function than by using the Gaussian function [14,15].

The results for the total cross sections obtained in [15] within the
HO+FSI and NO+FSI are given in Fig. 3 and compared with the SuSA and
RFG results and the MiniBooNE [3] and NOMAD [8] data (up to 100 GeV).
All models give results that agree with the NOMAD data but underpredict
the MiniBooNE ones, more seriously in the νµ than in ν̄µ cases. The dis-
crepancy with the MiniBooNE data (at energies < 1 GeV) is most likely
due to missing effects beyond the IA, e.g. those of the 2p–2h excitations
that have contributions in the transverse responses. This concerns also the
similar disagreement that appears when the phenomenological scaling func-
tion in SuSA is used. The latter, being exctracted from the (e, e′) data, is
a purely longitudinal QE response and thus is nearly insensitive to 2p–2h
MEC contributions.

Fig. 3. (Left panel) CCQE νµ+12C total cross sections per nucleon displayed versus
neutrino energy Eν evaluated using the RFG, HO+FSI, NO+FSI, and SuSA ap-
proaches with the standard value of the axial-vector dipole massMA = 1.03 GeV/c2

are compared with the MiniBooNE [3] and NOMAD [8] experimental data. (Right
panel) CCQE ν̄µ+12C total cross section.

In Fig. 4, we display the flux-folded differential cross section dσ/dQ2
QE

for both neutrino (left panel) and antineutrino (right panel) scattering off a
hydrocarbon (CH) target as a function of the reconstructed four-momentum
transfer squared (Q2

QE) that is obtained in the same way as for the exper-
iment, assuming an initial-state nucleon at rest with a constant binding
energy, Eb, set to 34 MeV (30 MeV) in the neutrino (antineutrino) case.
The cross sections are folded with the MINERνA νµ and ν̄µ fluxes [1,2], and
the nucleon’s axial mass has the standard valueMA = 1.03 GeV. We observe
that RFG, SuSA, HO+FSI and NO+FSI approache yield predictions in an
excellent agreement with the experimental data, leaving not much space
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for large effects of 2p–2h contributions. HO+FSI and NO+FSI results are
higher than the SuSA ones and lie closer to the RFG results. In the RFG
calculation, we use the formalism of [19], assuming a Fermi momentum of
228 MeV/c and an energy shift of 20 MeV. Note that the RFG model with
the standard value of the axial mass (solid curve) also fits the data, being
in a very good agreement with the other approaches. Finally, the spread in
the curves corresponding to the four models is less than 7% in the case of
neutrinos and less than 5% in the case of antineutrinos.

Fig. 4. Flux-folded CCQE νµ+12C (left panel) and ν̄µ+12C (right panel) scattering
cross section per target nucleon as a function of Q2

QE and evaluated in the SuSA,
RFG, HO+FSI, and NO+FSI models; data [1, 2].

3. Conclusions

1. The results with different spectral functions (HO and NO) give quite
similar results (within 5–7%) for the CCQE cross sections, signaling
that the process is not too sensitive to the specific treatment of the
bound state.

2. The FSI leads to an increase of about 2% using spectral functions with
HO and NO s.p. wave functions, almost independently of the neutrino
energy.

3. All approaches based on IA underestimate MiniBooNE data for the
flux-averaged CCQE (νµ(ν̄µ) + 12C) differential cross sections and the
total cross section although the shape of the cross section is represented
by NO+FSI and HO+FSI approaches. For ν̄, the agreement is much
better.

4. All models give results that are compatible with the MINERνA and
NOMAD data. This points to the importance of the evaluation of
non-impulsive contributions, like those associated to MEC and their
evolution with energy. The 2p–2h contributions may be responsible
for the observed discrepancy in our analyses. Similar disagreement
is observed for the phenomenological scaling function of SuSA, that is
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purely longitudinal QE response and 2p–2h MEC should not contribute
to it when properly extracted from QE electron scattering, but could
contribute to QE neutrino scattering because of the axial current.

This work was partially supported by the Bulgarian National Science
Fund under contracts No. DFNI-T02/19 and No. DFNI-E02/6.
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