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GAMMA TUNNELING IN NUCLEI∗

A.Ya. Dzyublik

Institute for Nuclear Research, Kiev, Ukraine

(Received December 28, 2017)

Tunneling along the γ path between prolate and oblate axial shapes of
even–even nuclei, being in the ground state, is analyzed. Mixing of two
0+ states and splitting of their energies are calculated in the quasi-classical
approximation. Expressions for the E0 transition rates between these 0+

levels are derived and compared with the experiment for Kr isotopes. Mix-
ing of the prolate and oblate shapes in these nuclei is found to reach 50%.
Tunneling between states of the nucleus with the same axial shape but with
the angular momentum parallel and perpendicular to the symmetry axis is
also studied. The hindrance factor for decay of the 25+ isomeric level of
182Os, provided by γ tunneling, is estimated.
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1. Introduction

The potential energy of many nuclei has several minima, corresponding
to different shapes. In some cases, when the barriers separating such min-
ima are sufficiently low, the shapes can be mixed. In particular, theoretical
calculations [1] have shown that the energy surface of even–even isotopes of
Kr, as a function of the quadrupole parameters β, γ, has minima at γ = 0
and γ = π/3, corresponding, respectively, to prolate and oblate axially sym-
metric shapes. The deformation parameter β remains almost the same in
both potential wells. The barrier, separating them along the γ direction,
occurs to be shallow, so that just the γ motion ensures mixing of the shapes
and splitting of the 0+ levels in the ground state of Kr nuclei. The electron
conversion experiments [2–4], measuring intensities of the electric monopole
transitions between these 0+ levels, revealed their considerable enhancement,
which was attributed to the prolate–oblate mixing.
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More extraordinary example of the γ tunneling is represented by the
K isomer 25+ of 182Os with the energy of 7049.5 keV. It has a uniquely
short halflife of 150 ns and decays with probability 6% into the ground band
level Iπ = 24+, K = 0 [5]. The corresponding lifetime τ ≈ 0.4 × 10−5 s,
while the Weisscopf estimation for M1 transition only gives 0.3 × 10−13 s.
So the hindrance factor is FH ≈ 10−8. Such swift decay was explained [6]
by mixing of two states, corresponding to orientation of the total angular
momentum along the symmetry axis and perpendicularly to it. The mixing
is realized by a barrier tunneling in γ direction between the wells at γ = 0
and γ = 2π/3, where K = 25 and K = 0, respectively. The admixture
of the state with K = 0 in the isomer wave function has been numerically
calculated in [7], taking into account pairing correlations of nucleons.

We shall consider γ tunneling between the prolate and oblate shapes as
well as two prolate shapes of 182Os, directed perpendicularly to each other,
and having the same spin I = 25 but different projections of the intrinsic
angular momenta on the symmetry axis K = 25 and K = 0. We start from
the collective Hamiltonian, derived in [8, 9], which formally coincides with
the Bohr–Mottelson Hamiltonian. The corresponding Schrödinger equation
is solved quasi-classically.

2. Collective kinetic energy

The relative motion of A nucleons in the center-of-mass system is de-
scribed by the Jacobi vectors ~ξ1, ~ξ2, . . . , ~ξA−1. In order to separate nuclear
rotation, we introduce the body-fixed frame with axes x′, y′, z′ directed along
the principal axes of the inertia ellipsoid of the nucleus. Then the projections
of ~ξi on these axes should satisfy the following conditions:

A−1∑
i=1

ξix′ξiy′ =

A−1∑
i=1

ξix′ξiz′ =

A−1∑
i=1

ξiy′ξiz′ = 0 . (1)

Orientation of the body-fixed system is determined by the Euler angles
θ1, θ2, θ3.

We introduced the Eucledian space of the particle numbers with basis
unit vectors e1, e2, . . . , eA−1 and vectors

Ax′ =

A−1∑
i=1

ξix′ei , Ay′ =

A−1∑
i=1

ξiy′ei , Az′ =

A−1∑
i=1

ξiz′ei . (2)

Constraint (1) can be treated as an orthogonality condition of these vectors.
Another three collective variables are introduced as lengths of the vectors
Ax′,y′,z′
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a =

(
A−1∑
i=1

ξ2ix′

)1/2

, b =

(
A−1∑
i=1

ξ2iy′

)1/2

, c =

(
A−1∑
i=1

ξ2iz′

)1/2

, (3)

while the remaining 3A−9 variables as generalized Euler angles, which define
orientation of the vectors Ax′,y′,z′ in the abstract space.

It is convenient to transform a, b, c to new variables ρ, β, γ

a =
ρ√
3

[
1 + β cos

(
γ − 2π

3

)]
,

b =
ρ√
3

[
1 + β cos

(
γ +

2π

3

)]
,

c =
ρ√
3

[1 + β cos γ] . (4)

Here,
ρ =

(
a2 + b2 + c2

)1/2 (5)

denotes the hyperradius of the nucleus, and the coordinates β and γ define,
respectively, the deformation and triaxiality of the inertia ellipsoid.

The kinetic energy operator of the nucleus has been expressed in these
coordinates in [8]. Its collective part has the form of

T̂coll = T̂ρ −
~2

2B(ρ)

[
1

β4
∂

∂β
β4

∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

]
+

~2

8B(ρ)β2

[
Î2x′

sin2(γ − 2π/3)
+

Î2y′

sin2(γ + 2π/3)
+

Î2z′

sin2 γ

]
, (6)

where Î is the total angular momentum operator,

T̂ρ = − ~2

2m

1

ρ3A−4
∂

∂ρ
ρ3A−4

∂

∂ρ
(7)

is the kinetic energy operator for the monopole vibrations, the mass function
is

B(ρ) = 1
2mρ

2 , (8)

and m is the mass of the nucleon.
For rigid volume vibrations, the function B(ρ) may be replaced by B =

B(ρ0), depending on the equilibrium value of ρ. Let us compare it with the
hydrodynamical one Bhydr = (3/8π)AmR2

0, where R0 is the radius of the
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nucleus. For a uniform nucleus with sharp quadrupole surface, ρ0 and R0

are related by
ρ20 = A

〈
r2
〉
' 0.6AR2

0 , (9)

where 〈r2〉1/2 is the mean-square radius of the nucleus. Then the mass
parameter becomes [9]

B = 0.3AmR2
0 ≈ 2.5Bhydr . (10)

3. Collective motion

Let us consider an even–even nonrotating nuclei (I = 0), whose wave
function is governed by the equation

− ~2

2B

{
1

β4
∂

∂β
β4

∂

∂β
+

1

β2 sin 3γ

∂

∂γ
sin 3γ

∂

∂γ

}
Ψ(β, γ)

+W (β, γ)Ψ(β, γ) = EΨ(β, γ) . (11)

For every fixed γ, the potential energy W (β, γ) versus the deformation
parameter β reaches its local minimum at the point β0(γ). As γ varies from 0
to π/3, the curve β0(γ) traces the collective path along the valley connecting
prolate and oblate minima. The ends of the path are defined by β1 = β0(0)
if γ = 0 and β2 = β0(π/3) if γ = π/3.

Let us expand the potential energy in the Taylor series

W (β, γ) = W (β0(γ), γ) + 1
2C(γ) (β − β0(γ))2 + . . . , (12)

where the coefficient

C(γ) =

(
∂2W

∂β2

)
β=β0(γ)

(13)

determines stiffness of the local β vibrations. We assume that the local
softness parameter

µ(γ) =
β00(γ)

β0(γ)
� 1 , (14)

where the oscillator length

β00(γ) =

√
~

Bωβ(γ)
(15)

and frequency
ωβ(γ) =

√
C(γ)/B . (16)
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This allows us to write the wave function as a product

Ψ(β, γ) = β−2χnβ
(ξβ)ψ(γ) , (17)

where the function χnβ
(ξβ) describes harmonic vibrations about local equi-

librium position β0(γ)

ξβ = (β − β0(γ)) /β00(γ) , (18)

and nβ(γ) is the number of β phonons.
Another factor ψ(γ) satisfies the equation{

− ~2

2M(γ)

1

sin 3γ

∂

∂γ
sin 3γ

∂

∂γ
+ U(γ)− E

}
ψ(γ) = 0 , (19)

where
M(γ) = Bβ20(γ) (20)

is the effective mass parameter, varying along the collective path,

U(γ) = W (β0(γ), γ) +
~2

M(γ)
+ ~ωβ(γ)

(
nβ +

1

2

)
is the effective potential.

By substitution
ψ(γ) = (sin 3γ)−1/2ϕ(γ) , (21)

we transform the Schrödinger equation (19) for γ motion to{
− ~2

2M(γ)

∂2

∂γ2
+ V (γ)− E

}
ϕ(γ) = 0 (22)

with the new effective potential

V (γ) = U(γ)− 9~2

8M(γ)

(
1 +

1

sin2 3γ

)
. (23)

The function ϕ(γ) obeys the boundary condition

ϕ(0) = ϕ(π/3) = 0 . (24)
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4. WKB approximation

We solve Eq. (22) in the quasi-classical approximation (the turning points
are denoted by a and b). It is not applicable near the points γ = 0 and π/3.
Therefore, following [10], we omit the divergent tails of V (γ) in these points.
For simplicity, we assume that β0 does not change along the path. Besides,
the potential in the region 0 < γ < a is approximated by the parabola

V (γ) =
Mω2

γ

2
γ2 , (25)

where the mass parameter M = Bβ20 , whereas at b < γ < π/3 by

V (γ) =
Mω2

γ

2
(γ − π/3)2 + ∆V0 , (26)

where
∆V0 = U(π/3) . (27)

The WKB wave function at 0 ≤ γ < a has the form of

ϕ(γ) =
c1√
k(γ)

sin

 γ∫
0

k(γ′)dγ′

 , (28)

where
k(γ) =

√
2M [E − V (γ)]

/
~ . (29)

Applying standard matching rules near the turning point a, one finds
the wave function under the barrier (a < γ < b)

ϕ(γ) =
c1√
|k(γ)|

cos
(
φ1 −

π

4

)
eA exp

− b∫
γ

|k(γ′)|dγ′


+
1

2
sin
(
φ1 −

π

4

)
e−A exp

 b∫
γ

|k(γ′)|dγ′
 , (30)

where the action

A =

b∫
a

|k(γ)|dγ (31)
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and the angles

φ1 =

a∫
0

k(γ)dγ , φ2 =

π/3∫
b

k(γ)dγ . (32)

Inserting (25), (26) into (32), one has

φ1 =
πE

2~ωγ
, φ2 =

π(E −∆V0)

2~ωγ
. (33)

Approximating also the barrier in the region a < γ < b by the inverse
parabola

V (γ) ' −
Mω2

B

2

(
γ − π

6

)2
, (34)

one finds the well-known expression

A =
πW

~ωB
, (35)

where the barrier height

W = V (π/6)− E . (36)

The wave function in the oblate well (b < γ < π/3) becomes

ϕ(γ) =
c1√
k(γ)

C1 sin

 π/3∫
γ

k(γ′)dγ′

+ C2 cos

 π/3∫
γ

k(γ′)dγ′


 , (37)

where the coefficients are

C1 = 2 cos
(
φ1 −

π

4

)
sin
(
φ2 −

π

4

)
eA +

1

2
sin
(
φ1 −

π

4

)
cos
(
φ2 −

π

4

)
e−A ,

(38)
and

C2 = 2 cos
(
φ1 −

π

4

)
cos
(
φ2 −

π

4

)
eA − 1

2
sin
(
φ1 −

π

4

)
sin
(
φ2 −

π

4

)
e−A .

(39)
From the boundary condition ϕ(π/3) = 0, it follows that C2 = 0, i.e.,

4 cot
(
φ1 −

π

4

)
cot
(
φ2 −

π

4

)
= e−2A . (40)
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Then the wave function takes the form of

ϕ(γ) =
c2√
p

sin

1

~

γ∫
π/3

p dγ

 , (41)

where the amplitude for the oblate component of the wave function is

c2 =
1

2

sin (φ1 − π/4)

cos (φ2 − π/4)
e−Ac1 . (42)

Let the barrier have small transparency, i.e., e−2A � 1. In the case of
e−2A = 0, Eq. (40) reduces to the Bohr–Sommerfeld quantization rule

φ1(2)(ε) = (n1(2) + 3/4)π , (ni = 0, 1, 2, . . .) , (43)

which determines the unperturbed energies ε1, ε2 in both wells.
For the physical (perturbed) energies from Eq. (40), one finds

E± = 1
2(ε1 + ε2)± 1

2

√
∆ + v , (44)

where the notations are

∆ = ε1 − ε2 , v = 2v0 , v0 =
~ωγ
2π

e−A . (45)

The parameter v0 means the tunneling strength in the case of the potential
V (x), having two minima and tending to +∞ when x→ ±∞ [8]. However,
for γ motion in the finite interval 0 ≤ γ ≤ π/3 it doubles, v0 → v = 2v0.

Setting the energy of the ground state 0+1 to be zero, one finds the energy
of the first excited 0+2 state

E0+2
=
√
∆2 + 4v2 . (46)

The wave functions of this ground 0+ doublet can be written as a su-
perposition of well-known functions ϕ(0)

1(2)(γ), which describe γ vibrations in
two isolated potential wells:

ϕ±(γ) = c±1 ϕ
(0)
1 (γ) + c±2 ϕ

(0)
2 (γ) . (47)

The ratio of their amplitudes is given by

R± = c±2 /c
±
1 = − 2v

∆±
√
∆2 + 4v2

. (48)

For v � |∆|,
c+1 ≈ 1 , |c±2 | ≈

v

|∆|
. (49)
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5. Electric monopole transitions

Now, we shall analyze the E0 transitions between the levels of the doublet
0+2 and 0+1 . For the nucleus, treated as an uniformly charged drop with a
quadrupole deformation, the E0 transition operator reads [11]

M(E0) =
3Z

4π

(
β2 +

5
√

5

21
√
π
β3 cos 3γ

)
, (50)

where Z is the nuclear charge number. The E0 transition strength from the
initial state 0+2 to the final one 0+1 is given by

B
(
E0; 0+2 → 0+1

)
= |Mfi(E0)|2 . (51)

Inserting here the wave functions, one finds [9]

B
(
E0; 0+2 → 0+1

)
= qBmax

(
E0; 0+2 → 0+1

)
, (52)

where the factor
q =

4(
1 +R2

+

) (
1 +R2

−
) (53)

varies from q = 0 in the case of pure shape to q = 1 in the case of complete
mixing of shapes; the maximal strength

Bmax

(
E0; 0+2 → 0+1

)
=

(
3Z

8π

)2

×

{
β21 − β22 +

5
√

5

21
√
π

[
β31 + β32 +

3

2
(β1 + β2)

(
~

Bωβ
− 3

2

~
Bωγ

)]}2

. (54)

Here, we neglected small terms ∼ (~/Bωγ(β))2 inside the square brackets.
It is useful to rewrite the factor q as

q = 4c2
(
1− c2

)
= 4

(
v/E0+2

)2
, (55)

where c2 = (c−2 )2 is the weight of the oblate shape in the ground state 0+1 .
Inverting this equation, one can find the parameters c2 and v:

c2 = 0.5
(

1±
√

1− q
)
, v = 0.5

√
qE0+2

. (56)
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These formulas allow us to extract the parameters c2, v, and ∆ from ex-
perimental values of transition strengths B(E0) between the levels of the
ground 0+ doublet in the Kr isotopes [2–4]. Everywhere the mass pa-
rameter B was calculated by means of Eq. (10) with the nuclear radius
R0 = 1.2A1/3 fm. For 74Kr, where the energy E0+2

= 0.5 MeV, the deforma-
tion parameters β1 ≈ 0.38, β2 ≈ 0.32 and phonon energies ~ωγ = 1.689 MeV,
~ωβ ' 1.5 MeV, one finds Bmax(E0) = 0.074.

From experimental data 0.065 < Bexp(E0; 0+2 → 0+1 ) < 0.105 [4], we get

c2 = 50± 17% , v = 0.23± 0.01 MeV , 0 ≤ |∆| ≤ 0.2 MeV . (57)

Note that Petrovici et al. [12] predicted for 74Kr the weight c2 = 30% and 47%
with ∆ = −0.071 MeV, but their B(E0) < 0.037 contradicts the experiment.

For 76Kr with E0+2
= 0.76 MeV and β1 ≈ 0.37, β2 ≈ 0.30, we ob-

tained Bmax(E0) = 0.079. Comparing with the experimental data 0.07 <
Bexp(E0; 0+2 → 0+1 ) < 0.09 [13], we found

c2 = 50± 17% , v = 0.37± 0.01 MeV , 0 ≤ |∆| ≤ 0.25 MeV . (58)

For 78Kr, where E0+2
= 1.0 MeV, β1 ≈ 0.34 and β2 ≈ 0.30 [1], comparison

of Bmax(E0) = 0.038 with the data 0.035 < Bexp(E0; 0+2 → 0+1 ) < 0.060 [13],
gives

c2 = 50± 14% , v = 0.49± 0.01 MeV , 0 ≤ |∆| ≤ 0.28 MeV . (59)

6. Gamma tunneling in K-isomer 182Os

We estimate now the hindrance factor FH for decay of the 25+ isomer of
182Os, using the above formulas for mixing of the states ϕ(0)

1 (γ) with K = 25

and ϕ
(0)
2 (γ) with K = 0. The angular momentum Iπ = 25+ is conserved

during the mixing. In both cases, when γ = 0 and 2π/3, the nucleus 182Os
is axially symmetric and prolate. At γ = 0, it is oriented along the axis z′
of the body-fixed frame, while at γ = 2π/3, along the axis x′.

The decay probability per unit time from such a mixed state ϕi(γ) into
the level |f〉 = |Iπf = 24+,K = 0〉 level is determined by

Pi→f = c22w
(2)
i→f , (60)

where w(2)
i→f is the decay rate from the pure state ϕ(0)

2 , so that the hindrance
factor FH = c22. Then from Eq. (49), one finds the hindrance factor

FH =

(
~ωγ
π∆

)
exp

(
−2πW

~ωB

)
.
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According to Fig. 1 of [7], 2∆ = ~ωγ = 0.4 MeV, W = 2.152 MeV.
Putting also ~ωB = 0.4 MeV, we found the factor FH ≈ 10−15, whereas
Bengtsson et al. [7] obtained FH ≈ 10−6–10−9. At the same time, they
indicated that FH lowers by 5–6 orders if K-isomer has the same pairing gap
as in the ground state.
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