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In this work, we study an extension of the commonly used 5F scheme,
where b quarks are treated as massless partons, in which full mass effects are
retained in both the initial and in the final state. We name this scheme 5F
massive scheme (5FMS). We implement this scheme in the Sherpa Monte
Carlo event generator at MePs@Nlo accuracy, and we compare it for two
relevant cases for the LHC: bb̄→ H and pp→ Zb.
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1. Introduction

Processes with heavy quarks in the initial state, in particular associated
production processes, have seen in recent years a renewed interest [1–9].
From the theoretical point of view, they are interesting applications of mul-
tiscale processes with largely different scales. Ratio of these large scales can
give rise to large logarithms which might spoil the convergence of the pertur-
bative series. To avoid this, one can consider the b as a massless parton, and
construct a b-PDF which resums this potentially large collinear logarithms,
at the price of neglecting mass effects. An alternative point of view can be
that of treating the b quark as a massive, decoupled particle, which is only
produced in the final state, or treating the b quark as a massless parton on
the same footing as the other, thus contributing to the QCD evolution. In
this way, one is able to retain full mass effects at the price of keeping the
aforementioned possibly large collinear logs.

The former of these two approaches is called five-flavour (5F) scheme
and would schematically correspond to the right-hand side plot of Fig. 1,
while the latter is referred to as four-flavour (4F) scheme and is represented
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Fig. 1. 4F (left plot) versus 5F (right plot) scheme diagrams for V H production.

in the left plot of Fig. 1. These two approaches have generally been used in
a complementary, with the old way of saying being:

use the 4FS for exclusive observables,
and the 5FS for inclusive observables.

Many studies have however now shown that the 5FS scheme performs
generally better both when compared to data (see Fig. 2), [1], or when
comparing it with a matched calculation [4,8], although this too is only true
up to a certain extent. There are, in fact, regions of phase space where one
might still want to include exact mass effects, which would, in principle,
require the use of the 4FS.
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Fig. 2. In the plot, there is shown the error that is made when taking and αs and a
gluon PDF in the 4FS with respect to the 5FS baseline. As it can be seen, the two
effects partially mitigate each other, although this is true only for processes that
start at a low enough power of αs, and have a large gluon contribution.

In this work, we investigate the possibility of using a scheme, built upon
the 5FS, with exact mass dependence. We name this scheme five-flavour-
massive-scheme (5FMS). We implement the necessary ingredients to perform
calculations in this scheme in the SHERPA Monte Carlo event generator [10],
at MC@NLO accuracy [11,12]. A detailed description of this scheme and its
implementation can be found in [13].
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2. Including mass effects

2.1. Fixed order

In order to study the effects introduced by this new scheme, we take
an explicit example: bb̄ → H. Reference diagrams that contribute to the
next-to-leading order are shown in Fig. 3. At the level of partonic matrix
elements, the only difference between the 5FS and the 5FMS is that in the
latter full mass dependence is retained, including the initial state. As the
infrared divergent structure is modified by the presence of the b mass, that
acts as a collinear regulator, a modification of the standard Catani–Seymour
subtraction is required [13]. With this in place, we can generate fixed-order
events, see Fig. 4. As an example observable, we focus on the pT of the
produced H boson.
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Figure 2: Contributions to the born phase space of bb̄ ! H.

and v is the electroweak vacuum expectation value.

The matrix element corresponding to the emission of an extra gluon from the initial state b has the form
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We firstly show that indeed |Mbb̄!Hg|2 � Dak,b � Dak,b gives a finite number. Putting everything together
and expressing R in Eq. (7.3) in terms of splitting kinematics variables x, y and Q2 we get
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The soft limit is approached for x ! 1, and it is straight forward to check that, in this limit, Eq. (7.4) is not
only finite, but exactly zero.

Although the collinear limit, strictly speaking, does not exist if the mass of the parton remains non zero, we
can check that the quasi-collinear is finite. To phrase this slightly di↵erently we need to check that when
pa · pk (or y) approaches zero as mb, Eq. (7.4) remains finite. Again this is quite straightforward to see, and
in this limit we get exactly zero.

We now turn to the one loop contribution. At order ↵s, we have that
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Figure 3: Contributions to the real emission phase space of bb̄ ! Hg Eq. (7.3) and bg ! Hb.

Using Eq. (4.17) it is straightforward to see that indeed

V +

Z
d�1 S = O("0) , (7.9)

which in turn, combined with Eq. (7.4), yields that Eq. (2.5) is completely free of singularities.

7.1 Factorisation of collinear singularities

We now turn to how the inclusion of mass e↵ects a↵ects the collinear limit, and, therefore, the definition of
PDFs. Our goal here is not a precise and consistent discussion about the factorisation of collinear singularities
in the presence of massive initial state quarks, as this is beyond the scope of this work. Nevertheless it is
interesting to highlight the structure of mass correction, especially in the presence of parton densities that
have been obtained in a matched scheme.

In the standard case of massless initial state partons, Eq. (7.4) would be exactly zero. This is due to the fact
the only term appearing in the real emission matrix element is also the leading log that gets factorised into
the b-pdf and resummed through Altarelli-Parisi equations, Eq. (??). The reason is that, in the massless
case, this process has only two scales mH and some dimensional regulator that introduces a scale µF that
separates the divergent and finite part. This means that we can symbolically write

Z
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In the case of massive initial state particle we have an additional physical scale, mb. This scale now regulates
collinear divergences, we no longer need to introduce a collinear regulator related to the scale µF . However
we can in practice still introduce the scale µF , such that
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where we define A and B, such that
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⌘
, we mean terms that are only given by powers of the two ratios. In this way we separate

terms that appears also in the massless case, and get modified by power suppressed terms in the massive
case, and new terms that arise only when the massive case is considered.

As in the massless case the function A is proportional to the Altarelli-Parisi splitting function Pqq, by
extension we can define the massive A function to be proportional to the massive Pqq, which in turn is
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Fig. 3. Virtual and Real contributions to bb̄→ H.
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Fig. 4. Comparison of the 5F and the 5FM scheme.
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We know that mass effects contribute only a few percent to the total
cross section for this process. In addition, we know that they are power
suppressed and we expect them to scale like m2

b/p
2
T. This is, indeed, roughly

the behaviour shown in Fig. 4.

2.2. MC@NLO

We now want to study what happens when this scheme is matched to
the parton shower. Since we do not have a theoretical reference here, we
use pp → Zb data [14] from ATLAS. In particular, we replicate the set-up
used in [1], and we compare it with the 5FS MEPS@NLO line referenced
therein, see Fig. 5. The difference with respect to that set-up is that we
have MC@NLO accuracy only for the core pp → Z processes, while extra
jet contributions that are merged on top of that only come at leading order
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Fig. 5. We show prediction obtained in the 5FS, massless, at MEPS@NLO accuracy,
with up to 2 jets at NLO plus up to three jets at leading order. The 5FMS
prediction, on the other hand, includes only the 0 jet contribution at NLO, while
the 1,2 and 3 jets contributions are merged with LO accuracy.
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accuracy. Strictly speaking thus, we should compare the 5FMS MEPS@NLO
here with the 5F MEPS@LO prediction of [1], however, we expect some mass
effects to make up for some of the differences in accuracy.

As our aim is to investigate mass effects, in b-initiated processes, we
look at events in which at least one jet containing a b is tagged, and we
plot distributions for the leading b-jet and the Z-boson pT and y against
data. These plots are reported in Fig. 5. As it can be seen, this new scheme
performs rather well and, indeed, it shows the same type of compatibility
with data of the 5FS MEPS@NLO prediction, which is reassuring.

Further details and studies on this new scheme can be found in [13].
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