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We present a discussion on the methods for extracting a given parame-
ter from measurements of hadronic data, with particular focus on deter-
minations of the strong coupling constant. We show that when the PDF
dependency on the determination is adequately taken into account, the
dispersion between the results from different measurements is significantly
reduced. We speculatively propose the concept of preferred value of a pa-
rameter from a particular dataset.
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1. Introduction

Since the beginning of its operation, the Large Hadron Collider (LHC)
has produced a wealth of experimental data, which have been most notably
used to establish the existence of the Higgs boson [1, 2]. These results have
not only been used to validate the Standard Model but also to accurately
measure its parameters. This involves matching experimental data to the-
oretical predictions. The experimental results are typically obtained for
hadronic cross sections (σpp→X) for a given final state X, while the theory
predictions are usually computed for hard (partonic) quantities in the frame-
work of Perturbation Theory, σ̂ab→X . The two quantities can be related by
universal parton distributions [3]: Using the notation from Ref. [4], we have
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The Parton Distribution Functions (PDFs) of the proton, fa(x,Q2), cannot
be computed from first principles and instead need to also be determined by
appropriately matching experimental data (usually from a wide variety of
physical processes) to the predictions for the corresponding partonic cross
sections. Thus, a PDF fitting methodology can be viewed as an algorithm
that takes as input a set of experimental measurements, together with a set
of theory assumptions, and produces a set of parton distribution functions,
with an estimate of their uncertainties. Roughly speaking, the PDFs are
obtained by minimizing a χ2 error function

χ2 [{θ}, {α},D] =

ND∑
I,J=1

(TI [{θ}, {α}]−DI)C−1
IJ (TJ [{θ}, {α}]−DJ) , (2)

where {θ} represents the set of parameters that determine the PDF func-
tional form (e.g. the neural network parameters in the case of the NNPDF [5]
parametrization), {α} is the set of theoretical parameters used as input
(such as the value of the strong coupling constant αS(MZ) or the masses
of the heavy quarks), D = {D1 . . . DND} is the set of input experimental
data points (which will be useful to call global dataset), TI are the theory
predictions corresponding to the data DI , and CIJ is experimental covari-
ance matrix. More realistically, a state of art PDF determination incor-
porates schemes to compensate [6] biases due to normalization uncertain-
ties [7], regularization mechanisms to avoid overfitting (for example, cross
validation [8]) and self validating strategies such as closure tests [8] or tol-
erances [9, 10]. Usually, the theory parameters {α} are kept fixed while the
PDF parameters {θ} are optimized. However, it is, in principle, possible to
simultaneously optimize for some theory parameter, such as the |Vcs| of the
CKM matrix [11].

We recall that any theoretical prediction for hadronic observables σX ,
depends trough Eq. (1) both on the choice of PDF fitting methodology and
on the data used as input for the PDF fit (even though they are often pro-
vided together in the form of a set of PDFs, e.g. as grids in the LHAPDF [12]
format).

2. Parameter determination from hadronic data

We now turn our attention to the formalism used to extract theory pa-
rameters from the best fits to hadronic data. While the discussion applies
in general, we restrict ourselves to the determination of the strong coupling
constant, αS. The value of αS is generally quoted at the mass of the Z boson
and is usually [13, 14] taken to be consistent with the World Average pro-
duced by the Particle Data Group [15]. Two categories of determinations
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based on hadronic measurements enter the World Average: Those based
on PDFs [16–19], which are essentially obtained by optimizing Eq. (2) as
a function of αS, and the tt̄ production, currently including only the CMS
measurement at 7 TeV [20], which is instead based on minimizing over a χ2

function that considers explicitly the tt̄ data only (we call this the Partial
χ2 method). We shall discuss the relation between these categories and also
try to elucidate the noticeable fact that determinations of αS based on a
hadronic dataset, such as Ref. [20] as well as more recent ones like Ref. [21],
give significatively different results from the determinations based on the
PDFs that they use as input to compute the predictions in Eq. (1).

2.1. The Partial χ2 method

Several recent determinations of αS based on hadronic data [20–25] im-
plement the following procedure, which we shall dub Partial χ2:

1. Consider some experimental measurement of hadronic data, P. For
example, tt̄ production [20,24], prompt photon events [22] jet produc-
tion [21,23], and Z+jet production [25].

2. Compute theory predictions at discrete values of αS, following Eq. (1)
and suitably interpolating the results from PDF sets fitted with diffe-
rent values of αS (i.e. where αS(MZ) is a fixed parameter in Eq. (2)).

3. Construct a profile χ2
P(αS) characterizing the agreement between data

and theory: Analogously to Eq. (2), we have

χ2
p [αS,P] =

NP∑
I,J=1

(TI [αS]−DI)C−1
IJ (TJ [αS]−DJ) , (3)

where now the sum is over the partial dataset P.
4. Determine the best fit value of αS as the minimum of the profile.

We point out that the recommendation [13] for estimating αS uncertain-
ties on the PDFs, namely obtaining the final result with an upper and a lower
PDF variation of αS(MZ) does not apply when fitting αS itself. In this case,
the value of αS should be kept matched with the rest of the calculation. Note
that this does not imply that theory parameters cannot be fixed in PDF fits
by default: For example, the value of αS itself is fixed in the PDF4LHC
recommendation [13] to a value consistent with the PDG average [15] on the
grounds that it takes into account more information than that provided by
hadronic data; we may trade some internal consistency of the input D within
the PDF fitting framework with potentially more reliable external constrains
on the theory parameters. On the other hand, theoretical parameters that
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are to be fitted do certainly have to be varied consistently in the PDFs. This
is a required condition, but, as we argue next, not sufficient.

We now discuss the relation between the partial χ2 method we just de-
scribed and the dataset used to fit the PDF by optimizing the global χ2,
Eq. (2). In particular, it is pertinent to examine why does the partial χ2

appear to constrain αS in all the examples above. That is, why is the value
of χ2

p [αS,P] different at different values of αS?

2.2. PDF and αS determination from a partial dataset

We note that if the only data used to fit the PDFs was any of the par-
tial datasets above (such as e.g. tt̄ production), so that D = P, then we
would certainly not have enough constraints to determine the PDFs and αS

simultaneously: In fact, we would be able to obtain an adequate fit, char-
acterized by χ2/(ND − 1) ≈ 1 (see Ref. [8] for an extended discussion) for
any reasonable value of αS. We would, however, have big PDF uncertain-
ties, associated to the kinematic regions that are not constrained by P. For
example, if we were to fit PDFs to tt̄ production data only, we could obtain
a good fit at a higher value of αS(MZ) by compensating it with a reduced
gluon momentum fraction large x as we will show next in a more general
situation. Therefore, for D = P, the partial χ2 in Eq. (3) is flat and does
not allow to determine αS (in this case, χ2

P is also the global χ2, Eq. (2)).
It follows that for these relatively small datasets, the χ2

p [αS,P] profile
fundamentally measures the disagreement between the partial data set P
and the dataset included in the PDF fit, D, as a function of αS.

2.3. Inconsistency of the Partial χ2 method

The partial χ2 method neglects the fact that the dataset used in the
PDF fits, D, constrains αS itself, i.e. that the minimum of Eq. (2) adopts
significantly different values for different values of αS. That is, given the
measurement P, if one makes enough assumptions on the input data of the
PDFs to be able to extract αS(MZ) with competitive uncertainties, then the
prior over αS is not uniform. One cannot simply disregard the constrains
from D on the theory parameters {α} while utilizing them for the PDF
parameters {θ}. In particular, this can lead to evident inconsistencies such
as the value selected by the partial χ2 method being excluded by the PDF
on which the theoretical prediction Eq. (1) is based. This is then a logical
contradiction, because the result, which, as we have shown in Sec. 2.2, is
based on the agreement with D, is grounded on a prior that is internally
inconsistent to begin with. Moreover, the best fit PDFs away from the
global minimum in ({α}, {θ}) are subject to a large degree of arbitrariness:
in an ideal PDF fit where all theory and data are correct, every dataset has
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a χ2 per degree of freedom, χ2/d.o.f. ≈ 1. The χ2 increases when instead
not all the data can be accommodated (e.g. because the wrong value of
αS has been given as input). In this case, the result of the fit depends
on the number of points belonging to each particular dataset, in such a
way that the smaller a dataset is (in comparison to others which cannot
be fitted simultaneously), the less advantageous it is for the global figure
of merit Eq. (2) to bend the PDF in order to accommodate it. This is
clear in the case of the tt̄ data in the NNPDF 3.1 [5] fits. The default
dataset includes a total of 26 tt̄ production datapoints corresponding to the
ATLAS [26–28] and CMS [29–31] measurements of the total cross sections
and differential distributions, computed at NNLO [32, 33] (see Ref. [5] for
details). The tt̄ data has a large sensitivity to αS but a low statistical
weight in the fit (26 points to be compared to 3979 in total). Therefore, its
description (i.e. the partial χ2, Eq. (3)) deteriorates rapidly as we move αS

away from the best fit value. However, we can modify the assumptions on
D insisting that the tt̄ data is described at any value of αS. For example,
we set αS(MZ) = 0.121 where the top data is not so well described in
a default NNPDF fit that optimizes Eq. (2) on a large dataset (we have
χ2
tt̄/d.o.f. = 1.42) and increase the statistical weight of the top data by

fitting 15 identical copies of it. The effect of the reweighting is to greatly
improve the description of tt̄ (the partial χ2 becomes χ2

tt̄/d.o.f. = 1.02)
while slightly deteriorating the global χ2. The most significative change
between the default fit and that with increased weight happens in the gluon
PDF, which is nevertheless compatible within PDF uncertainties, as we show
in Fig. 1. Indeed, because of the high degeneracy in the space of PDF
parameters, {θ}, important variations in the input assumptions (that e.g.
change drastically the partial χ2) can be reabsorbed into relatively small
changes in the PDFs (both in terms of deterioration of the global χ2 and
distances in PDF space). In this way, we have demonstrated that the partial
χ2 does not measure significant physical properties of the hard cross section,
but rather properties of the PDF minimization.

In summary, we propose that the most statistically rigorous way to pro-
duce an αS determination from the measurement P is to include it in a
PDF fit and determine simultaneously αS and the PDFs based on the global
χ2 that now includes P as well as the rest of the data D. Therefore, if
P was already included in the D, the result from optimizing the global χ2

profile Eq. (2) would be unchanged. Since there is no way to disentangle
the D dependence from Eq. (1), this method is no more PDF-dependent
than the partial χ2 minimization, but it solves the shortcomings that we
have described. The correction on the value of αS when P is included will
either be a small or point to a flaw in the theory, experiment description or
fitting methodology. An important advantage is that the process will then
be treated using the full fledged PDF fitting machinery (as opposed to a
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Fig. 1. Comparison of the gluon PDF between an NNPDF 3.1-like global fit at
NNLO where we have set αS(MZ) = 0.121, and another fit where the only difference
that the weight with which the tt̄ production data enters the fit has been multiplied
by 15. The reweighting causes noticeable decrease in the gluon at large x (but yet
roughly within uncertainties) to accommodate the tt̄ data which is then described
optimally, with χ2

tt̄/d.o.f. = 1.02, to be compared to χ2
tt̄/d.o.f. = 1.42 before the

reweighing. The improvement of the description of the tt̄ data comes at the cost
of a deterioration in the global χ2 (χ2/d.o.f. = 1.215 before the reweighing and
χ2/d.o.f. = 1.229 afterwards).

naive minimization of Eq. (2)). In particular, this takes care of implement-
ing the correct treatment of the normalization uncertainties, which has been
observed to make a significant difference in an αS determination [34]. We
conclude that it is questionable to consider hadronic results as independent
constrains on αS in World Averages rather than as corrections to the results
from the prior PDFs.

3. Preferred values

While we have concluded that the quantities suitable for inclusion in
global averages are those based on minimizing the global χ2 profile, Eq. (2),
it is nevertheless interesting to define a preferred αS value from a given
dataset P. Some possible usages include the assessment of the constraints
provided by the measurement, and possibly the study of the higher order
corrections (e.g. one could take the dispersion over ensemble of preferred
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values of a suitable set of processes as an estimate of Missing Higher Order
Uncertainty). We first list some desirable properties that such definition
should have.

— Independent of the relation between the number of points in the dataset
of interest, NP , and those in the global dataset, ND. Clearly, if we are
interested in intrinsic physical properties, the number of points in the
dataset should not change the result.

— Explicitly depend on the global dataset used in the PDF fit D. Since,
as discussed in the previous section, in general, we cannot get rid of
the dependence on D, it needs to be clearly acknowledged.

— Converge to the determination from P alone, in the sense described in
Sec. 2.2, when it determines αS by itself. While this definition is likely
more interesting for smaller, experimentally cleaner datasets, this is a
logical asymptotic property.

The Partial χ2 method discussed in Sec. 2.1 has none of these properties
and, therefore, it is not a particularly good definition of preferred value (it
may, however, approximate the third property reasonably well in practice).
On the other hand, the exercise illustrated in Fig. 1 points at a definition
that satisfies them:

Preferred value of αS for the data P . The value of αS that corresponds
to the minimum of the global χ2 over values of αS and PDF parameters
{θ}, when the PDF parameters are restricted to result in a good fit for
P within its experimental uncertainties, for all values of αS.

The value is preferred in the sense that the constraints from P take
precedence over those from D, in particular, regardless of the number of
points, thereby satisfying the first requirement. Once the constrains from P
are enforced, a global χ2 which includes D is minimized, thus satisfying the
second condition.

The main difficulty is to algorithmically specify what a good fit means:
Intuitively, if the dataset is self consistent at a given value of αS, then we
require that χ2

P/d.o.f. ≈ 1. If this is the case at every relevant value of αS,
then the partial χ2

P of this reweighed fit is flat and αS is determined based
on the agreement with D (but based on PDFs that have been modified to
accommodate P at all values of αS). If P determines αS by itself (in the
sense of Sec. 2.2), then the partial χ2 will not be flat and will be used to
obtain αS. A suitable interpolating procedure between these two situations
could be obtained in the NNPDF framework by minimizing as a function of
{θ} and αS

ERF = χ2 [{θ}, αS,D] + wχ2 [{θ}, αS,P] , (4)
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where w is a large number. Because of the cross validation-based regulari-
zation, the effect of w will saturate either when we reach χ2

P/d.o.f. ≈ 1, so
that only the first therm varies as a function of αS, or else, if P determines
αS, the curvature of profile will exclusively depend on the second term.

4. Conclusions

We argue that the uncertainties from determinations of αS(MZ) from
hadronic data can be significatively reduced by interpreting them as co-
rrections on PDF-based determinations, equivalent to adding the data to
the PDF fit. We propose a definition a preferred value of a parameter that
may be advantageous when studying theory uncertainties.
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