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In these proceedings and the talk on which it is based, the author re-
views the work he has participated in, during the last three years while
being an ESR under the HiggsTools network. It is based on four peer-
reviewed papers as well as some unpublished work. The paper is framed
around the calculation of the planar Feynman integrals contributing to the
two-loop correction to H+j production in hadron colliders. That project
(which had the calculation of the two-loop contribution to the decay width
for H→Zγ as a spin-off) resulted in analytical expressions, of which some
were expressible in terms of the function class of generalized polylogarithms,
for which methods of reduction and evaluation will be discussed. Yet some
of the the master integrals were not expressible in terms of that function
class, for those elliptic integrals were needed, and a method useful to iden-
tify such cases, that of d-dimensional unitarity cuts, is discussed as well.
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1. Introduction

With the 2012 discovery of the Higgs boson and no discoveries of ad-
ditional new elementary particles, the high-energy physics community is
entering an era of precision physics. In particular, that will involve preci-
sion measurements of all properties of the Higgs boson, as the properties
and interactions of that particle are most likely to form a window to new
physics. Precise measurements necessitate precise calculations, if the size of
the uncertainties of the experimental results are to remain higher than the
theoretical uncertainties, and such precise calculations will involve the cal-
culations of Feynman integrals with two or more loops. It should, however,
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be mentioned that the necessity for precise theoretical predictions is not the
only reason to perform such calculations, they are also of interest from a
more mathematical point of view, in the sense that they may help reveal
mathematical structures underlying such loop-level amplitudes, and thereby
all of nature.

2. Planar integrals for H + j production

In Ref. [1], we presented the planar Feynman integrals needed for the
calculation of the two-loop QCD correction to H+ j production. The calcu-
lation assumed light quarks to be massless, but retained the full dependence
of the mass of the massive quark coupling to the Higgs boson, unlike other
similar calculations [2–4].

The planar integrals were arranged into four different integral families
(shown in Fig. 1), which means that each planar Feynman integral can be
written as a linear combination of Feynman integrals for which the prop-
agators form a subset of the seven propagators defining a family (up to
permutations of the momenta of the external particles).

Fig. 1. The four planar integral families needed for H + j production. Thin lines
denote massless particles, thick lines particles with mass mt, and the thick dashed
line a particle with mass mH .

The four integral families were evaluated using the method of differential
equations [5–8] simplified by the use of canonical bases [9, 10] whenever
possible. In total, the four families contain 125 Feynman integrals, which
may be classified into three categories:

I. Integrals for which a canonical form was available, which allowed for
an expression of the integral in terms of generalized polylogarithms or
correspondingly log, Lin, and Li2,2.

II. Integrals for which a canonical form was available, but where no expres-
sion in terms of polylogarithms could be found. Instead, an expression
as an integral over logarithms and Li2 was used.

III. Integrals for which no canonical form is available due to the result
containing elliptic integrals.

For further discussion of these categories, see the following sections.
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3. Generalized polylogarithms

The function class of generalized polylogarithms (GPLs), that show up
in the first of the categories mentioned above, is defined recursively as [11,12]

G(a1, . . . , an;x) =

x∫
0

dz

z − a1
G(a2, . . . , an; z) (1)

with
G(0, . . . , 0︸ ︷︷ ︸

n

;x) =
logn(x)

n!
and G(;x) = 1 . (2)

This function class is a generalization of a number of functions known
to show up in results for Feynman integrals, such as logarithms, the clas-
sical polylogarithms Lin, and the harmonic polylogarithm Hm̄ [13]. Gen-
eralized polylogarithms are subject to a large number of relations between
each other [12, 14–20], and these relations allow for the reduction of any
generalized polylogarithm to a member of some minimal set. For general-
ized polylogarithms with weight ≤ 4 (the weight of a GPL is the number
of iterations, or correspondingly the number of ai indices), that set may be
chosen as the functions log, Li2, Li3, Li4, and Li2,2, as shown in Ref. [16]
together with explicit expressions for the reductions. Weight two has the
first non-trivial reduction, which is given as

G(a, b, x) = log(1− χ/α) log(χ) + Li2(χ/α)− Li2(1/α)
+2πi log(α)sgn(α)T (1, χ, α) (3)

with α = 1− a/b, χ = 1− x/b, and with T (1, χ, α) being a function which
evaluates to 1 whenever α is inside the triangle spanned (in the complex
plane) by the points 0, 1, and χ, and to zero otherwise. At weights three
and four, the corresponding relations are longer but of a similar nature, and
they are all added to Ref. [16] in a directly usable Mathematica format.

Of the polylogarithmic functions left after the reduction, Lin is well-
studied and optimized methods for its evaluation are available. That is less
so for Li2,2 which is defined as

Li2,2(x, y) =
∞∑

i>j>0

xi yj

i2 j2
, (4)

an expression which converges in the region where |x| ≤ 1 and |xy| ≤ 1. An
optimized algorithm for the evaluation of Li2,2 is described in Ref. [16]. The
algorithm works by mapping each Li2,2 for which the arguments are outside
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the convergent region, to it, and additionally by finding ways to make the
convergence faster close to |xy| ≈ 1, where Eq. (4) converges slowly.

Implementations of the reduction and evaluation, made in respectively
Mathematica and C++, are both made available with Ref. [16].

4. Higgs decay to Z + γ

No meaningful prediction for H + j production can be made using only
the planar integrals. Yet it turns out that the Feynman integrals needed for
the calculation of the two-loop QCD correction to Higgs-decay into Z + γ
form a sub-set of the planar integrals discussed in the previous section. All
these integral fall in category I, which means that they are expressible in
terms of log, Lin, and Li2,2 as discussed above. The result for the decay width
for that process, including the two-loop QCD correction, were presented in
Ref. [21] (see also Refs. [22, 23]), and it can be seen plotted in Fig. 2 as a
function of the Higgs mass.

Fig. 2. Plots of the decay width Γ for H → Zγ. δQCD in the right figure denotes
the fraction of ΓH→Zγ coming from the two-loop QCD correction. The figures are
taken from Ref. [21].

5. d-dimensional unitarity cuts

Getting a set of Feynman integral into the canonical form used for the
calculations in Ref. [1], and for most other recent calculations of Feynman
integrals using the method of differential equations, is an art and a challenge.
Various mathematical algorithms have been proposed [24–26], but the most
successful method uses a consideration of the pole structure as revealed by
generalized unitarity cuts [10].

A unitarity cut may be defined as a change of integration contour to a
small circle (or in the multi-variable case a hypertorus) in the complex plane
around the pole formed by a propagator in the Feynman integral. Unitarity
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cuts have had much use in the analysis of one-loop diagrams, playing a large
role in the so-called NLO revolution [27–31], but also at two-loop [32–35]
and in other theories [36–38] there have been developments.

Most of the considerations cited above perform the unitarity cut in four
dimensions. Yet in order to extract as much information as possible from
the unitarity cut, for use in the extraction of a canonical form, it is desirable
to perform the cut d-dimensionally.

One way of doing that, which is discussed in Ref. [39], consists of making
a variable change from the momentum integration to an integration that uses
the propagators of the Feynman integral as integration variables, in which
case they are known as the Baikov variables [40–43]. In the Baikov variables,
a Feynman integral has the (schematic) form

I ∝
∫

B(x)q

xa11 · · ·x
an
n

dNx , (5)

where the xi are the Baikov variables, and where B(x), which comes from
Jacobian factors from the variable change, is known as the Baikov polyno-
mial.

At one loop, n = N = E + 1 where E is the number of independent
external momenta. At higher (L) loop orders, it is simple to get an expression
for which N = LE+L(L+1)/2, but picking a clever order of the integrations
can reduce that number in most cases. At higher loops, there is also no longer
agreement between the number of integration variables N and the number
of propagators n, and in most cases N will be a little larger than n.

In the Baikov variables, the unitarity cut procedure becomes almost
trivial, as it can be written as∫

dx

xa
→

∮
dx

xa
, (6)

where the latter integral can be trivially performed using the (multiple)
residue theorem. Performing this procedure on all integration variables cor-
responding to propagators will give a constant for all one-loop Feynman
integrals, and at higher loops, it will leave an N − n dimensional integral
to be done — a number that for two-loop cases is usually 1, occasionally 0,
and never larger than 2.

Occasionally, the procedure of cutting all available propagators leaves an
integral that evaluates to an elliptic integral — a class of functions that may
be exemplified by the “complete elliptic integral of the first kind”

K(k) =

1∫
0

dt√
(1− t2) (1− k2t2)

. (7)
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When this happens, one can deduce that the Feynman integral in question
may not be expressed without such functions, which means that any attempt
at finding a canonical form for that integral, or to express it in terms of GPLs,
will be futile. Of the 125 Feynman integrals calculated in Ref. [1], only the
eight that are seen in Fig. 3 had elliptic integrals in their result. They
come in two different kinds. For the first four, the box-triangle topologies,
the unitarity cut procedure discussed above reveals their elliptic structure —
not so for the last four, the double-boxes. Their “ellipticity” appears because
they couple to the box-triangles in the system of differential equations, so
no new elliptic structures are introduced by the double-box topologies.

Fig. 3. The eight Feynman integrals from Ref. [1] that have elliptic integrals in
their result. The figure is taken from Ref. [1].

Elliptic integrals in the context of Feynman integrals have a long history
[33,44–47], most of it focusing on the so-called fully massive sunrise topology
which is the simplest Feynman integral for which such a structure appears.
See also Refs. [48–51] for newer works.

Several additional exiting new developments involving d-dimensional uni-
tarity cuts and Baikov variables have been made in the recent years, see
Refs. [52–58].

6. Discussion

In order to be able to calculate the NLO QCD correction to H + j
production, also the non-planar integrals are needed. This will introduce
three additional families (E, F, and G), along with new elliptic structures.
A result for these should become available in the not too distant future. One
additional ingredient that will be needed in order to produce a result for the
final cross section is the analytical continuation of the Feynman integrals
to the physical region(s), something which may be a harder task than it
sounds, particularly for the integrals in categories II and III. In addition, an
electro-weak contribution to H → Zγ may appear.

The unitarity cut procedure discussed above is a way to distinguish the
integrals that can be brought to canonical form (categories I and II), from
those that cannot (category III). But is there an inherent property that
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distinguishes category I and II, which it is possible to reveal using unitarity
cuts or other methods? When an integral is in canonical form, it is known
that the result can be formally expressed as Chen iterated integrals [59], but
perhaps is it possible to specify a more minimal and specific set of functions
that can be used to express all such cases, similarly to the set of log, Lin,
and Li2,2 for the case of generalized polylogarithms up to weight 4.

These considerations are both examples of natural continuations of the
directions discussed on the previous pages.
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316704, for the funding needed to produce the research outlined above. In
addition, I wish to thank Roberto Bonciani, Vittorio Del Duca, Johannes
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ano Tommasini, and Christopher Wever for collaboration on the mentioned
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