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We describe the program pySecDec, which factorises endpoint singu-
larities from multi-dimensional parameter integrals and can serve to cal-
culate integrals occurring in higher order perturbative calculations numer-
ically. We focus on the new features and on frequently asked questions
about the usage of the program.
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1. Introduction

At the CERN Large Hadron Collider (LHC), the exploration of the Higgs
sector has just begun. Data with unprecedented precision are being and will
be produced, allowing us to further explore fundamental questions like the
nature of electroweak symmetry breaking, of which we only got a glimpse
so far by the discovery of the Higgs boson. The comparison of these data to
theoretical predictions is vital in order to identify effects of “New Physics”,
which may manifest themselves first indirectly, via loop effects. High preci-
sion theoretical predictions are, therefore, mandatory for the success of the
LHC program, and even more so at future colliders.
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To increase the precision of the theoretical predictions, higher orders in
the perturbative expansion in the strong and electroweak coupling constants
need to be calculated. Such corrections often involve integrals depending on
several kinematic/mass scales at two (or more) loops, where analytic results
are hard to achieve.

In these cases, numerical approaches may offer a solution. A method
which proved useful in the presence of dimensionally regulated singulari-
ties is sector decomposition [1–4], as it provides an algorithm to factorise
such singularities in an automated way. The coefficients of the resulting
Laurent series in the regulator are parametric integrals which can be in-
tegrated numerically. This algorithm has been implemented in the pro-
gram SecDec [5–8], where from version 2.0 [6] the restriction to Euclidean
kinematics was lifted by combining sector decomposition with a method to
deform the multi-dimensional integration contour into the complex plane
[9,10]. Other implementations of the sector decomposition algorithm can be
found in Refs. [11–18].

In this article, we describe the new version of the SecDec program,
called pySecDec [8]. We particularly focus on the user interface, providing
answers to “Frequently Asked Questions”.

2. Structure of the program

The program consists of two basic parts: an algebraic part, based on
python and FORM [19–21], and a numerical part, based on C++ code. The
isolation of regulated endpoint singularities and the subsequent numerical
integration can act on general polynomial functions, whereof Feynman inte-
grals are a special case.

Loop integrals (after the Feynman parametrisation and momentum in-
tegration) can be considered as special cases of these more general poly-
nomial integrands. In the python code, this is reflected by the following
structure: The python function make_package accepts a list of polynomials
raised to their individual powers as input — corresponding to the box (1b)
in Fig. 1. In contrast, loop_package takes a loop integral (optionally from
either its graph or its propagator representation), which corresponds to the
box (1a). After constructing the Feynman parametrisation of the loop inte-
gral, loop_package calls make_package for further processing. The steps (1)
to (7) are performed in python and FORM, where FORM produces optimized
C++ code. The compiled integrand functions are by default combined into
a library. For the numerical integration, we provide a simple interface to
integrators from the Cuba [22] library. The user also has direct access to
the integrand functions, for example, to pass them to an external integrator.
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Fig. 1. Flowchart showing the main building blocks of pySecDec.

2.1. Installation and usage

The program can be downloaded from http://secdec.hepforge.org
or https://github.com/mppmu/secdec. It relies on python and runs with
versions 2.7 and 3. It also uses the packages numpy (http://www.numpy.org)
and sympy (http://www.sympy.org).

It is easiest to install pySecDec from a release tarball available at
https://github.com/mppmu/secdec/releases/latest. After download,
pySecDec is installed by the following shell commands:

tar -xf pySecDec-<version>.tar.gz
cd pySecDec-<version>
make
<copy the highlighted output lines into your .bashrc>

The make command will automatically build further dependencies in ad-
dition to pySecDec itself. These are the Cuba library [22, 23] needed for
multi-dimensional numerical integration, FORM [19–21] for the algebraic ma-
nipulation of expressions and to produce optimized C++ code, Nauty [24] to
find sector symmetries and the GSL library [25]. The lines to be copied into
the .bashrc define environment variables which make sure that pySecDec
and its dependencies are found. The pySecDec user is strongly encouraged
to cite the additional dependencies when using the program.



378 S. Borowka et al.

2.1.1. Geometric sector decomposition strategies

The program Normaliz [26, 27] is needed for the geometric decompo-
sition strategies geometric and geometric_ku. In pySecDec version 1.3,
the versions 3.0.0, 3.1.0, 3.1.1, 3.3.0 and 3.4.0 of Normaliz are known to
work. Precompiled executables for different systems can be downloaded from
https://www.normaliz.uni-osnabrueck.de. We recommend to export its
path to the environment of the terminal such that the normaliz executable
is always found. Alternatively, the path can be passed directly to the func-
tions that call it, using normaliz_executable=[path_to_normaliz]. The
strategy iterative can be used without having Normaliz installed.

2.2. Usage

The program comes with detailed documentation in both pdf
(doc/pySecDec.pdf) and html (doc/html/index.html) format. Online do-
cumentation can be found at https://secdec.readthedocs.io/en/latest.
In the examples folder, we provide examples for several ways how to apply
the program. One is to use pySecDec in a “standalone” mode to obtain
numerical results for individual integrals. This corresponds to a large extent
to the way previous SecDec versions were used. The other allows the gen-
eration of a library which can be linked to the calculation of amplitudes or
other expressions, to evaluate the integrals contained in these expressions.

To get started, we recommend to read the section “getting started” in
the online documentation. The basic steps can be summarised as follows:

1. Produce a python script to define the integral, the replacement rules
for the kinematic invariants, the requested order in the regulator and
some other options (see e.g. the one-loop box example
box1L/generate_box1L.py).

2. Run the script using python. This will generate a subdirectory ac-
cording to the name specified in the script.

3. Type make -C <name>, where <name> is your chosen name. This will
create the C++ libraries.

4. Produce a python script to perform the numerical integration using
the python interface (see e.g. box1L/integrate_box1L.py).

Further usage options such as looping over multiple kinematic points are
described in the documentation and in Ref. [8].

The algebra package can also be used for symbolic manipulations on
integrals. This can be of particular interest when dealing with non-standard
loop integrals, or if the user would like to interfere at intermediate stages of
the algebraic part.
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2.3. New features

In addition to the complete re-structuring and usage of open source soft-
ware only, there are various new features compared to SecDec 3:

— The functions can have any number of regulators for endpoint singu-
larities, not only the dimensional regulator ε.

— The treatment of numerators of loop integrals is more flexible. Numer-
ators can be defined in terms of contracted Lorentz vectors or inverse
propagators or a combination of both.

— The distinction between “general functions” and “loop integrands” is
removed in the sense that all features are available for both, loop
integrals and general polynomial functions (as far as they make sense
outside the loop context).

— The inclusion of additional functions which do not enter the decom-
position has been facilitated and extended.

— The treatment of poles which are higher than logarithmic has been
improved.

— A procedure has been implemented to detect and remap singularities
at xi = 1 which result from special kinematic configurations.

— A symmetry finder [28] has been implemented which can detect iso-
morphisms between sectors.

— Diagrams can be drawn (optionally, based on neato [29]; the program
will however run normally if neato is not installed).

— The evaluation of multiple integrals or even amplitudes is now possible,
using the generated C++ library.

2.4. Frequently asked questions

In the following, we list some questions which may come up during usage
of the program, and give answers which should spare the user to search the
manual.

— How can I adjust the numerical integration parameters?
If the python interface is used for the numerical integration, i.e. a
python script like examples/integrate_box1L.py, the integration pa-
rameters can be specified in the argument list of the integrator call.
For example, using Vegas as integrator:
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box1L.use_Vegas(flags=2, epsrel=1e-3, epsabs=1e-12,
nstart=5000, nincrease=10000, maxeval=10000000,
real_complex_together=True)

or, using Divonne as integrator:
box1L.use_Divonne(flags=2, epsrel=1e-3, epsabs=1e-12,
maxeval=10000000, border=1e-8, real_complex_together=True)

The parameter real_complex_together tells the integrator to inte-
grate real and imaginary parts simultaneously. A list of possible op-
tions for the integrators can be found at the end of Section 5.9 of the
manual.

— How can I increase the numerical accuracy?

The integrator stops if any of the folllowing conditions is fulfilled:
(1) epsrel is reached, (2) epsabs is reached, (3) maxeval is reached.
Therefore, setting these parameters accordingly will cause the integra-
tor to make more iterations to reach a more accurate result.

— How can I tune the contour deformation parameters?

You can specify the parameters in the argument of the integral call in
the python script for the integration, see e.g. line 12 of
examples/integrate_box1L.py:
str_integral_without_prefactor, str_prefactor,
str_integral_with_prefactor=box1L(real_parameters=[4.,-0.75,1.25,1.],
number_of_presamples=1000000,deformation_parameters_maximum=0.5)

This sets the number of presampling points to 106 (default: 105)
and the maximum value for the contour deformation parameter λ,
deformation_parameters_maximum, to 0.5 (default: 1). The user should
make sure that deformation_parameters_maximum is always larger than
deformation_parameters_minimum (default: 10−5). These parameters
are explained in Section 5.9. of the manual under “Parameters”.

— What can I do if the program stops with an error message containing
“sign_check_error” ?

This error occurs if the contour deformation leads to a wrong sign of the
Feynman i δ prescription, usually due to the fact that the deformation
parameter λ is too large.

Choose a larger value for number_of_presamples and a smaller value
(e.g. 0.5) for deformation_parameters_maximum (see item above). If
that does not help, you can try 0.1 instead of 0.5 for
deformation_parameters_maximum.
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— What does “additional_prefactor” mean exactly?
We should first point out that the conventions for additional prefac-
tors defined by the user have been changed between SecDec 3 and
pySecDec. The prefactor specified by the user will now be included
in the numerical result.
To make clear what is meant by “additional”, we repeat our conventions
for Feynman integrals here: A scalar Feynman graph G in D dimen-
sions at L loops with N propagators, where the propagators can have
arbitrary, not necessarily integer powers νj , has the following repre-
sentation in momentum space:

G =

∫ L∏

l=1

dDκl
1

N∏
j=1

P
νj
j

(
{k}, {p},m2

j

) ,

dDκl =
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iπ
D
2
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j

)
=
(
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)
, (1)

where the qj are linear combinations of external momenta pi and loop
momenta kl. Introducing Feynman parameters leads to

G = (−1)Nν Γ (Nν − LD/2)∏N
j=1 Γ (νj)

×
∞∫

0

N∏

j=1

dxj x
νj−1
j δ

(
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xl

)
UNν−(L+1)D/2
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. (2)

The prefactor (−1)Nν Γ (Nν − LD/2)/
∏N
j=1 Γ (νj) coming from the

Feynman parametrisation will always be included in the numerical
result, corresponding to additional_prefactor=1 (default), i.e. the
program will return the numerical value for G. If the user defines
additional_prefactor=‘gamma(3-2*eps)’, this prefactor will be
expanded in ε and included in the numerical result returned by
pySecDec, in addition to the one coming from the Feynman parame-
trisation.
For general polynomials not related to loop integrals, i.e. in
make_package, the prefactor provided by the user is the only prefac-
tor, as there is no prefactor coming from a Feynman parametrisation
in this case. This is the reason why in make_package the keyword for
the prefactor defined by the user is prefactor, while in loop_package
it is additional_prefactor.
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— What can I do if I get ‘nan’?

This means that the integral does not converge and can have several
reasons. When Divonne is used as an integrator, it is important to use
a non-zero value for border, e.g. border=1e-8. Vegas is in general the
most robust integrator. When using Vegas, try to increase the values
for nstart and nincrease, for example nstart=10000 (default: 1000)
and nincrease=5000 (default: 500).

— Can I include my own functions in the numerator of a loop integral?

Yes, as long as the functions are finite in the limit ε→ 0. The nume-
rator should be a sum of products of numbers, scalar products (e.g.
‘p1(mu)*k1(mu)*p1(nu)*k2(nu)’ and/or symbols (e.g. ‘m’). The de-
fault numerator is 1. Examples:

p1(mu)*k1(mu)*p1(nu)*k2(nu) + 4*s*eps*k1(mu)*k1(mu)
p1(mu)*(k1(mu) + k2(mu))*p1(nu)*k2(nu)
p1(mu)*k1(mu)*my_function(eps)

More details can be found in Section 5.2.1 of the manual.

— How can I integrate just one coefficient of a particular order in ε?

You can pick a certain order in the C++ interface (see Section 2.2.4 of
the manual). To integrate only one order, change the line

const box1L::nested_series_t<secdecutil::UncorrelatedDeviation
<box1L::integrand_return_t» result_all = secdecutil::
deep_apply( all_sectors, integrator.integrate );

to

int order = 0; // compute finite part only
const secdecutil::UncorrelatedDeviation<box1L::integrand_return_t>
result_all = secdecutil::deep_apply(
all_sectors.at(order), integrator.integrate );

where box1L is to be replaced by the name of your integral. In addition,
you should remove the lines

std::cout << "-- prefactor -- " << std::endl;
const box1L::nested_series_t<box1L::integrand_return_t> prefactor =

box1L::prefactor(real_parameters, complex_parameters);↪→
std::cout << prefactor << std::endl << std::endl;

std::cout << "-- full result (prefactor*integral) -- " << std::endl;
std::cout << prefactor*result_all << std::endl;
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because the expansion of the prefactor will in general mix with the
pole coefficients and thus affect the finite part. We should point out
however that deleting these lines also means that the result will not
contain any prefactor, not even the one coming from the Feynman
parametrisation.

— How can I use complex masses?

In the python script generating the expressions for the integral, define
mass_symbols in the same way as for real masses, e.g.

Mandelstam_symbols = [’s’, ’t’]
mass_symbols = [’msq’]

In loop_package then define

real_parameters = Mandelstam_symbols,
complex_parameters = mass_symbols,
. . .

In the integration script (using the python interface), the numerical
values for the complex parameters are given after the ones for the real
parameters:

str_integral_without_prefactor, str_prefactor,
str_integral_with_prefactor = integral(
real_parameters=[4.,-1.25],complex_parameters=[1.-0.0038j])

Note that in python, the letter ‘j’ is used rather than ‘i’ for the imag-
inary part.

— When should I use the “split” option?

This option can be useful for integrals which do not have an Euclidean
region. If certain kinematic conditions are fulfilled, for example, if the
integral contains massive on-shell lines, it can happen that singularities
at xi = 1 remain in the F polynomial after the decomposition. The
split option remaps these singularities to the origin of parameter space.
If your integral is of this type, and with the standard approach, the
numerical integration does not seem to converge, try the “split” option.
It produces a lot more sectors, so it should not be used without need.

We also would like to mention that very often a change of basis can
be beneficial if integrals of this type occur in the calculation.



384 S. Borowka et al.

3. Conclusions

We have described new features of the program pySecDec, which is
publicly available at https://github.com/mppmu/secdec. pySecDec is
entirely based on an open source software. The algebraic part can isolate
end-point singularities in any number of regulators from general polynomial
expressions, for example multi-loop Feynman integrals. For the numerical
part, a library of C++ functions is created, which allows very flexible usage,
and, in general, outperforms SecDec 3 in the numerical evaluation times. In
particular, it extends the functionality of the program from the evaluation
of individual (multi-)loop integrals to the evaluation of larger expressions
containing multiple integrals, as for example two-loop amplitudes. We have
also provided answers to some questions which were frequently asked by
pySecDec users.
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