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I comment and summarize the principles underlying the Four Dimen-
sional Regularization/Renormalization (FDR) approach to the UV and IR
infinities. A few recent results are also reviewed.
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1. Introduction

The overwhelming complexity of the perturbative calculations performed
nowadays to cope with the precision required by the present and future ex-
perimental measurements in High Energy Particle Physics makes it advisable
to try alternative approaches to this problem. The source of many compli-
cations is the presence of divergent integrals in the intermediate steps of
the calculations, that need to be regulated and removed from the physical
predictions.

In this contribution, I review the present status of the FDR approach [1],
with special emphasis on the mechanisms which should be used as guidelines
when defining divergent integrals in unitary gauge theories.

2. FDR

The main aim of FDR is embedding the UV subtraction directly in the
definition of the loop integration. In that way, the renormalized Green’s
functions are directly computed in four dimensions, without adding coun-
terterms in the Lagrangian L [2]. FDR can also be used to regulate IR
divergences [3]. In the following two subsections, I review the main features
of FDR.
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2.1. UV infinities

The FDR UV subtraction works at the integrand level. Consider, for
example, a UV divergent one-loop integrand

J(q) =
1

q2Dp
, Dp = (q + p)2 . (1)

The FDR loop integration over J(q) is defined as follows:∫ [
d4q
]
J(q) ≡ lim

µ→0

∫
R

(
J(q)− 1

q̄4

)
≡
∫ [

d4q
] 1

q̄2D̄p
, (2)

where

q̄2 ≡ q2 − µ2 , D̄p ≡ Dp − µ2 . (3)

In Eq. (2) R is an arbitrary UV regulator and µ2 regulates the IR behavior
induced by the subtraction term 1/q̄ 4. Tensors are defined likewise. Given,
for instance,

Jαβ(q) =
qαqβ

q2Dp1Dp2

, (4)

one has ∫ [
d4q
]
Jαβ(q) = lim

µ→0

∫
R

(
Jαβ(q)− qαqβ

q̄ 6

)
. (5)

This definition can be extended to more loops [4]. The subtracted integrands
are dubbed FDR vacua, or simply vacua, and do not depend on physical
scales.

2.2. Virtual IR divergences

For IR convergent loop integrals, q2 in the original integrands — such
as J(q) in Eq. (1) — can be left unbarred. Barring it regulates virtual IR
divergences, giving rise to IR logarithms of µ. As an example, the fully
massless scalar one-loop triangle is defined in FDR as [3]∫ [

d4q
] 1

q̄2D̄p1D̄p2

≡ lim
µ→0

∫
d4q

1

q̄2D̄p1D̄p2

=
iπ2

2s
ln2

(
µ2

−s− i0

)
, (6)

with s = (p1 − p2)2 = −2(p1 · p2).
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2.3. Real IR divergences

Virtual and real IR divergences are matched by a consistent treatment
of the real radiation. The cutting rule

i

q̄ 2 + i0+
→ (2π) δ+

(
q̄2
)

(7)

establishes the needed connection between barred loop propagators and mas-
sive external particles. As a consequence, the logarithms of µ in Eq. (6) can
be rewritten as counterterms integrated over a µ-massive phase-space Φ̄3∫

Φ2

<
(∫ [

d4q
] 1

q̄2D̄p1D̄p2

)
=

∫
Φ̄3

1

s̄13s̄23

{
s̄ij = (p̄i + p̄j)

2

p̄2
i,j = µ2 . (8)

Thus, m-body virtual and (m + 1)-body real IR divergences compensate
each other, as depicted in Fig. 1. In both cases, the divergent splitting is
regulated by µ-massive unobserved particles, denoted by thick lines. This
treatment has been shown to work at NLO [3]. The corresponding NNLO
Ansatz is illustrated in Fig. 2.

Fig. 1. Cancellation of NLO final-state IR singularities in FDR.

Fig. 2. Cancellation of doubly unresolved final-state IR singularities in FDR
(Ansatz).

3. Fundamental properties of the loop integration

In this section, I enumerate the three key properties that must be main-
tained by any consistent definition of loop integration and show how they are
obeyed in Dimensional Regularization (DReg) and FDR. The properties are:
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1. Shift invariance;

2. The possibility of cancelling numerators and denominators;

3. The possibility of inserting sub-loop expressions in higher loop calcu-
lations (sub-integration consistency).

When the above requirements hold, r.h.s. and l.h.s. coincide in Eq. (9),
Eq. (10) and Fig. 3, respectively,∫

R

d4q1 · · · d4q` J(q1, · · · , q`) =
?
∫
R

d4q1 · · · d4q` J(q1 + p1, · · · , q` + p`) ,

(9)∫
R

d4q1 · · · d4q`
/Di

D0 · · ·/Di · · ·Dk
=
?
∫
R

d4q1 · · · d4q`
1

D0 · · ·Dk
, (10)

Fig. 3. Schematic representation of the sub-integration consistency requirement.

The first condition guarantees routing invariance, the second one main-
tains the needed gauge cancellations, while the third requirement is essential
to ensure unitarity. In fact, the unitarity equation

T − T † = i T †T

mixes different loop orders, so that it is essential that the result of a sub-loop
integration stays the same also when embedded in higher loop computations.

3.1. DReg

In DReg, the first two conditions are fulfilled by construction. On the
other hand, preserving the sub-integration consistency requires introducing
order-by-order couterterms (CTs) in L. For example, without CTs, one has
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∫
dnq1dnq2

1(
q2

1 −M2
)2 1(

q2
2 −M2

)2
∣∣∣∣∣
1
ε
=0

6=

(∫
dnq

1

(q2 −M2)2

∣∣∣∣
1
ε
=0

)2

,

(11)

which prevents one from defining loop integrals as DReg integrals devoid of
1/ε poles. The role of the CTs is precisely subtracting UV poles in such a
way to restore the equality in Eq. (11).

3.2. FDR

FDR integrals are shift invariant, e.g.∫ [
d4q
] 1

q̄ 2D̄p
=

∫ [
d4q
] 1

q̄ 2D̄−p
, (12)

because both sides share the same subtraction term. As for the numer-
ator/denominator cancellation, one has to distinguish self-contractions of
loop momenta generated by tensor decomposition from the case when they
originate from Feynman rules. In the former case, no cancellation must oc-
cur1. On the other hand, gauge invariance prescribes cancellation in the
latter situation. FDR deals with both circumstances thanks to the intro-
duction of the so-called Extra Integrals (EI). Consider, for instance,∫ [

d4q
] q2

q̄ 2D̄p1D̄p2

6=
∫ [

d4q
] /q2

/̄q 2D̄p1D̄p2

. (13)

The inequality holds because the l.h.s. subtracts q2/q̄ 6, whilst 1/q̄ 4 is sub-
tracted in the r.h.s. The difference can be computationally encoded in an
EI, defined as the difference between the two subtraction terms surviving
the µ→ 0 limit∫ [

d4q
] µ2

q̄2D̄p1D̄p2

≡
∫
R

d4q
q̄2 − q2

q̄ 6
= −µ2

∫
d4q

1

q̄ 6
=
iπ2

2
. (14)

Thus, it is possible to write the following algebraic equation:∫ [
d4q
] q2

q̄2D̄p1D̄p2

=

∫ [
d4q
] /̄q2

/̄q2D̄p1D̄p2

+

∫ [
d4q
] µ2

q̄2D̄p1D̄p2

. (15)

1 This is a consequence of requiring the result of the decomposition to coincide with
the original tensor.
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From all of this, it is clear that preserving gauge cancellations prescribes
the replacement q2 → q̄2 both in denominators and numerators whenever q2

does not originate from tensor reduction [5]. This operation is called Global
Prescription (GP).

As for the unitarity condition, the FDR counterpart of Eq. (11)∫ [
d4q1

] [
d4q2

] 1(
q̄2

1 −M2
)2 1(

q̄2
2 −M2

)2 =

(∫ [
d4q
] 1

(q̄2 −M2)2

)2

(16)

holds without the addition of CTs. However, the equality in Fig. 3 is fulfilled
only if the GP at the level of the sub-amplitude on the left does not clash
with the GP at the level of the full amplitude on the right. This is not
always the case, but it is possible to correct for the mismatch and ensure
sub-integration consistency by adding “Extra” Extra Integrals (EEI) derived
by solely analyzing the loop diagrams on the right [6].

4. Results

In the following, I review a few recent results obtained in the framework
of FDR.

4.1. DReg versus FDR @NLO

A one-to-one correspondence exists between DReg and FDR for both
UV and IR divergent loop integrals [7]

Γ (1− ε)πε
∫

dnq

µ−2ε
R

(· · ·)

∣∣∣∣∣
µR=µ and 1

εi
= 0

=

∫ [
d4q
]

(· · ·) . (17)

Analogously, for the real contribution

(
µ2

R

s

)ε ∫
φ3

dx dy dz (· · ·) δ(1− x− y − z)(xyz)−ε
∣∣∣∣∣
µR=µ and 1

εi
= 0

=

∫
φ̄3

dx dy dz (· · ·) δ
(
1− x− y − z + 3µ2/s

)
, (18)

where φ3 and φ̄3 are massless and µ-massive three-body phase spaces, re-
spectively.
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4.2. DReg versus FDR @NNLO

FDR has been proven to renormalize consistently off-shell QCD up to
two loops [6]. The αS and mq shifts necessary to translate FDR to MS in
DReg have been determined by analyzing the FDR vacua of the two-loop
2- and 3-point QCD correlators G(2−loop) given in Fig. 4.

Fig. 4. Irreducible 2- and 3-point QCD Green’s functions.

4.3. EEIs

Analyzing the FDR EEIs led to a fix of two-loop “naive” FDH in DReg [6]

G
(2−loop)
bare,DReg|ns=4 → G

(2−loop)
bare,DReg|ns=4 +

∑
DiagEEIb|ns=4 , (19)

where ns = γµγ
µ = gµνg

µν . In the above equation, EEIbs are DReg integrals
obtained from FDR EEIs by dropping the subtraction term, e.g.∫ [

d4q
] 1

q̄2D̄p
→
∫

dnq
1

q2Dp
. (20)

The EEIbs reproduce the effect of the evanescent operators needed in FDH
and dimensional reduction to restore renormalizability, at least off shell. A
preliminary study of the two-loop QCD vertices in Fig. 5 indicates that the
same phenomenon is likely to be observed on-shell as well [8].

Fig. 5. On-shell two-loop γ∗ → qq̄ and H → bb̄ QCD vertices.
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4.4. Local subtraction of IR divergences @NLO

It is possible to set up a local FDR subtraction of the final-state IR
infinities by rewriting the virtual logarithms as counterterms to be added to
the real radiation [7], in the same spirit of Eq. (8). Schematically

σNLO =

∫
Φ2

(
|M |2Born + |M |2Virt︸ ︷︷ ︸

devoid of logs of µ

)
F

(2)
J (p1, p2)

+

∫
Φ3︸︷︷︸

µ→0 here

(
|M |2Real F

(3)
J (p1, p2, p3)− |M |2CT F

(2)
J ( p̂1, p̂2︸ ︷︷ ︸

mapped kinematics

)
)
, (21)

where FJ are jet functions. For instance, in the case of e+e− → γ∗ → qq̄(g),
the explicit form of the local counterterm is

|M |2CT =
16παS

s
CF|M |2Born(p̂1, p̂2)

(
s2

s13s23
− s

s13
− s

s23
+
s13

2s23
+
s23

2s13
− 17

2

)
,

(22)
and the mapping reads

p̂α1 = κΛαβ p
β
1

(
1 +

s23

s12

)
, p̂α2 = κΛαβ p

β
2

(
1 +

s13

s12

)
, (23)

where κ =
√

ss12
(s12+s13)(s12+s23) and Λαβ is the boost that brings the sum of p̂1

and p̂2 back to the center-of-mass frame: p̂1 + p̂2 = (
√
s, 0, 0, 0).

The inclusive σNLO = σ0

(
1 + CF

3
4
αS
π

)
cross section is reproduced by

a numerical implementation of Eq. (21). In addition, successful compar-
isons [9] with MadGraph5_aMC@NLO [10] interfaced with FastJet [11] have
been attained for realistic jet observables.

5. Outlook

FDR is turning to a competitive tool to compute radiative corrections.
The UV subtraction is incorporated, at the integrand level, in the definition
of the loop integration. As a consequence, one directly deals with four-
dimensional integrals, without introducing UV counterterms in L. This has
been shown to be a workable alternative to DReg up to two loops for off-shell
quantities.

The FDR regularization of the IR divergences is well-understood at NLO,
and a completely local subtraction of final-state IR infinities has been worked
out for two-jet cross sections.
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Going on-shell at NNLO seems feasible. In fact, as a by-product of the
FDR UV treatment, a fix to two-loop “naive” FDH avoiding evanescent
couplings is available for on-shell observables.

Future investigations include an extension of FDR to initial-state IR sin-
gularities and a complete two-loop calculation [12] of the QCD form factors
in Fig. 5. Finally, it would be interesting to investigate FDR integration as
a new mathematical tool to be used also in other branches of physics where
divergent integrals occur.
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