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MAGNETIZED QCD PHASE DIAGRAM:
NET-BARYON SUSCEPTIBILITIES∗
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Employing the Polyakov extended Nambu–Jona-Lasinio model, we de-
termine the net-baryon number fluctuations of magnetized three-flavor
quark matter. We show that the magnetic field changes the nature of the
strange quark transition from crossover to first-order at low temperatures.
In fact, the strange quark undergoes multiple first-order phase transitions
and several critical end points emerge in the phase diagram.
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1. Introduction

The existence of a chiral critical end point (CEP) in the QCD phase
diagram is still an open question. Its possible existence and location are
important goals of the heavy-ion collision (HIC) programs. The effect of
external magnetic fields on different regions of the phase diagram is very
important, e.g., for heavy-ion collisions at very high energies, the early stages
of the Universe and magnetized neutron stars.

The fluctuations of conserved quantities, such as baryon, electric, and
strangeness charges number, play a major role in the experimental search
for the CEP in HIC. Experimental measurements of cumulants of net-proton
(proxy for net-baryon) are expected to carry information about the medium
created by the collision [1]. The cumulants of the net-baryon number are
particularly relevant as they diverge at the CEP [2]. We will study how
cumulants of the net-baryon number are affected by the presence of magnetic
fields with its consequences for the location of the CEP.
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2. Model

The Lagrangian density of the PNJL model in the presence of an external
magnetic field reads

L = q̄ [iγµD
µ − m̂f ] q +Gs

8∑
a=0

[
(q̄λaq)

2 + (q̄iγ5λaq)
2
]
− 1

4
FµνF

µν

−K {det [q̄(1 + γ5)q] + det [q̄(1− γ5)q]}+ U
(
Φ, Φ̄;T

)
.

The q = (u, d, s)T is the three flavor quark field with corresponding (current)
mass matrix m̂f = diagf (mu,md,ms). The (electro)magnetic tensor is given
by Fµν = ∂µA

EM
ν −∂νAEM

µ , and the covariant derivativeDµ = ∂µ−iqfAµEM−
iAµ couples the quarks to both the magnetic field B via AµEM, and to the
effective gluon field via Aµ(x) = gAµa(x)λa2 , where Aµa is the SUc(3) gauge
field and qf is the quark electric charge (qd = qs = −qu/2 = −e/3). A static
and constant magnetic field in the z direction is considered, AEM

µ = δµ2x1B.
The logarithmic effective potential U

(
Φ, Φ̄;T

)
[3] is used, fitted to reproduce

lattice calculations (T0 = 210 MeV). The divergent ultraviolet sea quark
integrals are regularized by a sharp cutoff Λ in three-momentum space.

The used model parameters are: Λ = 602.3 MeV, mu = md = 5.5 MeV,
ms = 140.7 MeV, G0

sΛ
2 = 1.835, and KΛ5 = 12.36 [4]. Besides, two model

variants with distinct scalar interaction coupling are analyzed: a constant
coupling, Gs = G0

s , and a magnetic field-dependent coupling Gs = Gs(eB)
[5, 6]. The magnetic field coupling dependence, Gs = Gs(eB), reproduces
the decrease of the chiral pseudo-critical temperature as a function of B
obtained in LQCD calculations [7].

Fluctuations of conserved charges, such as the net-baryon number, pro-
vide important information on the effective degrees of freedom and on critical
phenomena. The nth order net-baryon susceptibility is given by

χnB(T, µB) =
∂n
(
P (T, µB)/T 4

)
∂(µB/T )n

. (1)

Symmetric quark matter is considered µu = µd = µs = µq = µB/3 in the
present work.

3. Results

The quark condensates 〈qq̄〉(T, µB)/〈qq̄〉(0, 0) in the absence of an ex-
ternal magnetic field are shown in Fig. 1. While the chiral condensate (left
panel) shows a crossover transition at high temperatures (T > TCEP), it
undergoes a first-order phase transition at lower temperatures (T < TCEP).
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Fig. 1. The (vacuum normalized) light-quark (left panel) and strange-quark (right
panel) condensates 〈qq̄〉(T, µB)/〈qq̄〉(0, 0). The chiral first-order phase transition
(solid line), the CEP (black dot), and both the chiral (dashed line) and deconfine-
ment (dotted line) crossover boundaries are shown.

The first-order phase transition boundary ends up in a CEP (dot) at
(TCEP = 133MeV, µCEP

B = 862MeV). Despite the strange quark condensate
being discontinuous at the first-order chiral phase transition, its value suffers
only a slight change and is still high (far from being approximately restored).
The decrease of the strange quark condensate, and thus the approximately
restored phase, is attained through a crossover transition. Nevertheless, an
interesting feature is seen when we look at the χ3

B and χ4
B net-baryon num-

ber susceptibilities in Fig. 2. Just as the non-monotonic dependence of the
susceptibilities near the CEP, which signals critical phenomena, a similar
structure is seen at low T and µB ≈ 1500 MeV [8]. This indicates that a
slight change on the model parametrization (e.g., a stronger scalar coupling)

Fig. 2. The χ3
B (left panel) and χ4

B (right panel) net-baryon number susceptibilities.
The chiral first-order phase transition (solid line), the CEP (black dot), and both
the chiral (dashed line) and deconfinement (dotted line) crossover boundaries are
shown.
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might induce a first-order phase transition for the strange quark. A strong
external magnetic field has exactly this effect [9]. The strange quark con-
densate and the net-baryon number susceptibilities for both Gs(eB) (right
panel) and G0

s (left panel) models at eB = 0.3 GeV2 are shown in Fig. 3. We
see that both models predict a first-order phase transition for the strange
quark and the existence of a CEP related with the strange quark sector.
Depending on the magnetic field strength, multiple phase transitions occur
for both light and strange quarks [10,11]. The behavior of χ3

B and χ4
B shows

the emergence of several CEPs through the characteristic non-monotonic
dependence, which signals the presence of critical behavior.

Fig. 3. The (vacuum normalized) strange-quark condensate (top panel), the χ3
B

(middle panel) and χ4
B (bottom panel) net-baryon number susceptibilities for

Gs(eB) (left) and G0
s (right) models at eB = 0.3 GeV2. The chiral first-order

phase transition (solid line), the CEP (black dot), and both the chiral (dashed
line) and deconfinement (dotted line) crossover boundaries are shown.
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