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THE LARGE-Nc MASSES OF LIGHT SCALAR MESONS
FROM QCD SUM RULES FOR LINEAR RADIAL

SPECTRUM∗
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We discuss a calculation of large-Nc masses of light scalar mesons from
the QCD sum rules. Two methods based on the use of linear radial Regge
trajectories are presented. We put a special emphasis on the appearance
of pole near 0.5 GeV in the scalar–isoscalar channel which emerges in both
methods and presumably corresponds to the scalar sigma meson.
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1. Introduction

It is widely known that the physics of non-perturbative strong interac-
tions is enciphered in the values of hadron masses. This intricate physics is
especially pronounced in the hadrons consisting of u and d quarks as their
masses mu,d are much less than the non-perturbative scale ΛQCD. At the
same time, the given hadrons shape the surrounding world. Aside from the
nucleons and pions, an important role is played by the scalar sigma meson
which is responsible for the main part of the nucleon attraction potential.
In the particle physics, the given resonance is identified as f0(500) [1] and is
indispensable for description of the chiral symmetry breaking in many phe-
nomenological field models describing the strong interactions. The scalar
sector below and near 1 GeV is perhaps the most difficult for traditional ap-
proaches in the hadron spectroscopy. The usual quark model faces serious
problems in explaining the existence and properties of light scalar mesons,
perhaps due to a strong admixture of glueball component. Despite the re-
cent progress in description of these states by dispersive methods [1, 2], the
scalar sector still remains puzzling.
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The physical characteristics of hadrons are encoded in various correlation
functions of corresponding hadron currents. Perhaps the most important
characteristics is the hadron mass. The calculation of a hadron mass from
first principles consists in finding the relevant pole of two-point correlator
〈JJ〉, where the current J is built from the quark and gluon fields, and
interpolates the given hadron. For instance, if the scalar–isoscalar state f0
represents an ordinary light non-strange quark–antiquark meson, its current
should be interpolated by the quark bilinear J = q̄q, where q stays for the u
or d quark. In the real QCD, the straightforward calculations of correlators
are possible only in the framework of lattice simulations which are still rather
restricted.

It is usually believed that confinement in QCD leads to approximately
linear radial Regge trajectories (see, e.g., [3]). The most important quantity
in this picture is the slope of trajectories. The slope is expected to be nearly
universal as arising from flavor-independent non-perturbative gluodynamics
which thereby sets a mass scale for light hadrons.

Among the phenomenological approaches to the hadron spectroscopy, the
method of spectral sum rules [4] is perhaps the most related with QCD. In
many cases, it permits to calculate reliably the masses of ground states on the
radial trajectories. This method exploits some information from QCD via
the Operator Product Expansion (OPE) of correlation functions [4]. On the
other hand, one assumes a certain spectral representation for a correlator in
question. Typically, the representation is given by the Ansatz “one infinitely
narrow resonance + perturbative continuum”. Such an approximation is
very rough but in many cases works phenomenologically well. Theoretically,
the zero-width approximation arises in the large-Nc limit of QCD [5]. In this
limit, the only singularities of the two-point correlation function of a hadron
current J are one-hadron states. For instance, the two-point correlator for
JS = q̄q has the following form to lowest order in 1/Nc (in the momentum
space):
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where the residues appear from the definition of the matrix element 〈0|JS|n〉=
GnMS(n). The OPE of correlator (1) in the large-Nc limit and to the lowest
order in the perturbation theory reads [6]

ΠS

(
Q2
)

=
3Q2

16π2
log

Q2

µ2
+

3

2Q2
mq〈q̄q〉−

αs

16π

〈
G2
〉

Q2
− 11

3
παs
〈q̄q〉2

Q4
+ . . . , (2)

where 〈G2〉 and 〈q̄q〉 denote the gluon and quark vacuum condensate, respec-
tively. According to the main assumption of classical QCD sum rules [4],
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these vacuum characteristics are universal, i.e., their values do not depend
on the quantum numbers of a hadron current J (the method is not applicable
otherwise).

In the present paper, we will demonstrate how all these ideas can be
used for calculation of large-Nc masses of light scalar mesons.

2. Scalar sum rules: Some results

We will assume the linear radial spectrum with universal slope

M2
S(n) = Λ2

(
n+m2

s

)
, n = 0, 1, 2, . . . , (3)

and (for consistency with the OPE): Gn = G. Here, MS denotes the mass of
a scalar state and m2

s is the intercept parameter of scalar trajectory. With
the linear Ansatz (3) for the radial mass spectrum, expression (1) can be
summed analytically, expanded at large Q2 = −q2 and compared with the
corresponding OPE in QCD. Thus, one obtains a set of sum rules. Similar
large-Nc sum rules were considered many times in the past for vector, axial,
scalar and pseudoscalar channels (see, e.g., references in [7]).

As a priori we do not know reliably the radial Regge behavior of scalar
masses, two simple possibilities can be considered: (I) The ground n = 0
state lies on the linear trajectory (3); (II) The state n = 0, below called σ,
is not described by the linear spectrum (3). The second assumption looks
more physical. Within the latter assumption, the mass of σ meson can be
derived as a function of the intercept parameter m2

s (we refer to Ref. [8] for
details, the chiral limit is considered)
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Substituting the physical values of vacuum condensates and numerical value
for slope Λ2 obtained from a solution of QCD sum rules, the mass func-
tion (4) is displayed in Fig. 1 [8].

The mass of the first radially excited state MS(1) is rather stable and
seems to reproduce the mass of a0(1450)-meson,Ma0(1450)=1474±19 MeV [1].
Its isosinglet partner (the candidates is f0(1370)) should be degenerate with
a0(1450) in the planar limit.

The plot in Fig. 1 demonstrates that the actual prediction for Mσ is
rather sensitive to the intercept of scalar linear trajectory, though initially
Mσ is not described by the linear spectrum (3). And vice versa, the expected
value of Mσ (around 0.5 GeV [1]) imposes a strong bound on the allowed
values of intercept m2

s . The plot in Fig. 1 shows that m2
s is likely close to

zero.
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Fig. 1. The values of Mσ, Gσ, G, and the first state on the scalar trajectory MS(1)

as a function of dimensionless intercept m2
s .

Thus, interpolating the scalar states by the simplest quark bilinear cur-
rent, we predict a light scalar resonance with mass about 500 ± 100 MeV
which is a reasonable candidate for the scalar sigma meson f0(500) [1].

3. Borelized scalar sum rules: Some results

The original QCD sum rules made use of the Borel transformation [4]
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The borelized version has a number of advantages and can be applied to
our large-Nc case. The details are contained in Ref. [9]. In short, the mass
of ground scalar meson m0 ≡ MS(0) as a function of Borel parameter is
shown in Fig. 2. It is seen that there are two solutions with “Borel window”
extending to infinity. The corresponding asymptotic values are given by
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The heavier state corresponds to the ground scalar mass in the standard
QCD sum rules. Normalizing this mass to the value mf0 = 1.00± 0.03 GeV
extracted from these canonical sum rules [6], we predict the value of slope
for the scalar trajectory, Λ2

f0
= 1.38 ± 0.07 GeV2, which is used in Fig. 2.

We obtain then the mass of the lightest scalar state, Mσ ≈ 0.62 GeV.
We arrive thus at the conclusion that our method predicts two parallel

scalar trajectories. The ground state on the first trajectory can be identified
with f0(980) and on the second one with f0(500) [1]. The existence of
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Fig. 2. The mass of ground scalar meson m0 ≡ MS(0) as a function of Borel
parameter at Λ2 = 1.38GeV2 [9].

two parallel radial scalar trajectories seems to agree with the experimental
data [3]. The masses of predicted radial states and a tentative comparison
with the observed scalar mesons for two trajectories are displayed in Tables I
and II, correspondingly.

TABLE I

The radial spectrum of the first f0-trajectory for the slope Λ2 = 1.38± 0.07GeV2.
The first 5 predicted states are tentatively assigned to the resonances f0(980),
f0(1500), f0(2020), f0(2200), and X(2540) [1].

n 0 1 2 3 4

mf0 (th 1) 1000± 30 1540± 20 1940± 40 2270± 50 2560± 50
mf0 (exp 1) 990± 20 1504± 6 1992± 16 2189± 13 2539± 14+38

−14

TABLE II

The radial spectrum of the second f0-trajectory for the slope Λ2 = 1.38±0.07GeV2.
The first 5 predicted states are tentatively assigned to the resonances f0(500),
f0(1370), f0(1710), f0(2100), and f0(2330) [1].

n 0 1 2 3 4

mf0 (th 2) 620 1330± 30 1780± 40 2130± 50 2430± 60
mf0 (exp 2) 400–550 1200–1500 1723+6

−5 2101± 7 2300–2350
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