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Dynamical bosonisation within the functional renormalisation group is
used to describe mesons as quark–antiquark bound states. Employing for
simplicity the two-flavour quark–meson model, it is exemplified how the
kinetic terms for pseudoscalar and scalar mesons are generated from the
quark kinetic term upon lowering the renormalisation group scale. Relat-
ing this method to the Dyson–Schwinger–Bethe–Salpether approach, one
can identify the momentum-dependent Yukawa three-point function in the
limit of vanishing renormalisation group scale with the Bethe–Salpeter am-
plitude. This, in turn, might allow for a systematic comparison of the
impact of truncations in the Dyson–Schwinger–Bethe–Salpether approach
on the one hand and the functional renormalisation group with dynamical
bosonisation on the other hand. This paper is concluded by an outlook on
a respective on-going investigation.
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1. Introduction

Hadrons are composite objects built from valence quarks, a quark–anti-
quark sea, and gluonic fields. Although they can be described within QCD,
the related calculations are very challenging and computationally demand-
ing. A prime example for this is provided by the fact that hadron spec-
troscopy obtained from lattice QCD calculations became only precise after
many technical obstacles have been overcome, see, e.g., [1] and references
therein. The impressive success of these investigations left no doubt that
QCD is the correct theory of Strong Interactions also on sub-GeV scales.

Despite all the merits of these investigations, there are some qualitative
questions that can hardly or not at all be answered by lattice calculations.
In this paper, we will focus on one of them: With the quarks and gluons
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being the fundamental degrees of freedom, how do mesons as composite
objects become propagating particles? To this end, we will apply functional
methods, or more precisely two versions of them: First, we will employ the
Functional Renormalisation Group (FRG) augmented with scale-dependent
(“dynamical”) bosonisation (DB), see [2, 3] and references therein. Second,
we will also use the Dyson–Schwinger and Bethe–Salpeter equations (DSE–
BSE) approach which has reached over the last years a considerable amount
of sophistication, for a recent review on the successes and open problems
within this approach, see the recent review [4] and references therein.

In this paper, we will also report on the status of an on-going investiga-
tion which intends to critically compare the FRG–DB with the DSE–BSE
approach. Although, at a purely formal level, they were to yield the same
results for observables if treated exactly, it is evident that a mapping of
truncations beyond the most simple ones (cf. [5]) is a non-trivial task. On a
purely technical level, the decisive question boils down to: In which of the
two approaches an apparent level of convergence of results upon increasing
the complexity of the employed truncation can be reached with less effort?
As usual, in functional approaches, the computational complexity is much
more dominated by the size of the kernels to be used when solving the
equations than by the amount of needed CPU time, see e.g., [6] as well as
references therein for a recent discussion of technical issues and practical
considerations in the DSE–BSE approach.

Last but not least, as in lattice QCD, also within functional approaches
all calculations are performed within Euclidean quantum field theory. In
the DSE–BSE approach, Minkowski time-like momenta (which are needed
when considering massive bound states) can be included via analytical con-
tinuation performed within the equations to obtain then Green’s functions
dependent on complex momenta, see e.g. [4,7–9] and references therein. The
corresponding procedure within the FRG approach is dubbed real-time cal-
culations and has been developed only recently, see e.g. [10–13]. An access to
bound state properties is then provided by calculating the correlation func-
tions of suitably chosen composite operators for complex values of momenta.
Hereby, the pole masses and decay widths of the hadronic resonances are,
at least in principle, encoded in the analytic properties of the propagators
of the effective hadronic degrees of freedom. The recent progress on extract-
ing decay widths in this manner within the DSE–BSE progress is described
in [14] as well as in [15].

2. Dynamical hadronisation

Dynamical hadronisation [16] is a technique based on combining boson-
isation with the FRG. The FRG equation within the investigation reported
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here is a suitably truncated version of the Wetterich equation [17]

∂tΓk =
1

2
Tr

1

Γ
(2)
k +Rk

∂tRk , (1)

where k is the Renormalisation Group (RG) scale, ∂t = k∂k, and Γ
(n)
k is the

nth field derivative of the effective action with respect to the bosonic and
fermionic fields of the theory. The regulator Rk(p2) suppresses all quantum
fluctuations below the scale k, and the trace sums over different fields, their
internal indices and integrates four-momenta. In the next step, the set of flow
equations is obtained by expanding the effective action in vertex functions,
which are then, in turn, truncated to obtain a closed system. In addition,
one might apply additional approximations to these vertex functions for
numerical convenience, see [2] for a corresponding discussion. The resulting
set of equations is then solved self-consistently. The physical information is
extracted for vanishing RG scale k → 0.

As the full complexity of QCD is not needed for the point we want to
make here, we exemplify it within an NJL-like effective theory. One might
motivate the use of this theory by “integrating out the gluons” [18] which
is possible due to the infrared suppression of the gluon propagator, see [19]
and references therein. Thus, we consider an effective theory with a four-
fermion interaction which can be mapped via bosonisation techniques to the
quark–meson model [18] containing quark–meson Yukawa interactions.

Within the FRG, the flow of the fermionic four-point function in this
model is non-vanishing and thus the four-fermi interaction is regenerated.
Applying in every RG step a Hubbard–Stratonovich (HS) transformation to
reshuffle the four-fermion term into the Yukawa couplings is called dynam-
ical hadronisation [16, 20, 21]. (NB: It has also been successfully applied to
two-flavour QCD in the Landau gauge [22–24], and thus a generalisation of
the arguments provided in the remainder of this paper to QCD is on the
basis of these calculations straightforward.) Note that dynamical hadroni-
sation provides also a significant computational advantage: The four-point
Green’s function is described by a meson exchange, simplifying thus the ten-
sor structures without any loss of information. Such feature is a key point to
establish a proper comparison with four-point functions used in the DSE–
BSE approach in which the reduction of the corresponding DSE (sometimes
then also called inhomogeneous BSE in this context) to the linear BSE pro-
vides a similar simplification.

In the FRG calculations presented below, a full-momentum-dependent
dynamical hadronisation has been performed, and meson self-interactions
up to the 12th power in the meson field have been taken into account.
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3. Comparison to Dyson–Schwinger–Bethe–Salpeter approach

Observables constitute the main comparable objects not only between
different functional methods but also with any other non-perturbative ap-
proach. The procedure of obtaining properties of bound states within the
FRG approach will be published elsewhere [2].

In the present work, we will focus on the relations and differences be-
tween the functional methods. Although the compatibility between them
has been proven, at least in principle [5], there are features of the system
that cannot be observed in the DSE–BSE approach, and there is some ad-
ditional information which can be extracted. Furthermore, the three-point
function from the FRG and the Bethe–Salpeter amplitude should coincide.

4. Preliminary results, conclusions and outlook

It is instructive to analyse the wave-function renormalisation functions
Zk,i(p

2). In the HS transformation, we include pseudoscalar–isovector ~π
and scalar–isoscalar σ fields, and as no kinetic term for them is generated in
the very first bosonisation step, an appropriate choice is to set Zk=UV,π =
Zk=UV,σ = 0. Furthermore, defining

Zk,sum ≡
√
Z−2
k,q + Z2

k,φ , (2)

with Zk,φ being a particular isospin-weighted combination of boson terms,
probability conservation requires Zk,sum = 1 at every scale k. (NB: We
employ Z−2

k,q to be in agreement with the usual notation.) Our results for
Zk,i(p

2 = 0) are displayed in Fig. 1.
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Fig. 1. Plot of scale evolution of the wave-function renormalisations at zero mo-
mentum in terms of the scale.
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This plot shows the explicit generation of kinetic terms for the pseu-
doscalar and scalar mesons caused by the RG flow. Furthermore, the prob-
ability amplitude is preserved along the flow with a relative error less than
5% which we believe is mostly caused by the missing contributions of higher-
lying mesons. Note that the employed model is not confining, and thus the
quark stays propagating also in the infrared. It is nevertheless illustrative
to see how the quark kinetic term first generates and then feeds the ab ini-
tio absent kinetic terms of the composite states, the mesons. A complete
analysis and discussion will be published elsewhere [25].

In addition, we obtained the full-momentum-dependent quark–meson
three-point function. Setting a different set of initial conditions such that
infrared values agree with experimental data, they should agree with the
correspondingly determined Bethe–Salpeter amplitude from the DSE–BSE
approach. In Fig. 2, we plot the renormalised three-point function at zero
relative momentum. It is displayed together with its values at negative p2
obtained by performing an analytical continuation.
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Fig. 2. Plot of the renormalised three-point function with 0 relative momenta and
angle, for positive and negative values of p =

√
p2.

It shows the expected behaviour for time-like momenta and possesses a
pole exactly at p2 = −m̄2

π. In an on-going investigation [25], we aim at a
systematic comparison of this three-point function in increasingly more com-
plete truncations to the correponding Bethe–Salpeter amplitude obtained in
different truncation schemes in order to elucidate the relation between these
two functional approaches after suitable truncations have been applied.
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