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We briefly review the basic features of a new framework for relativistic
perfect fluid hydrodynamics of polarized systems consisting of particles with
spin one half. Using this approach, we numerically study the stability of a
stationary vortex-like solution, representing global equilibrium of a rotating
medium.
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1. Introduction

The recent observation of global spin polarization of Λ hyperons by the
STAR Collaboration [1] has rekindled the interest in polarization and vortic-
ity in ultrarelativistic heavy-ion collisions. In contrast to a multitude of clas-
sical effects [2,3], the polarization of spin represents a first, rather clear, ex-
perimental manifestation of a pure quantum phenomenon in nucleus–nucleus
collisions. A particularly appealing theoretical explanation of this effect in-
vokes a direct coupling between the thermal vorticity and polarization, which
is realized in the global equilibrium state of a rotating medium [4, 5]. Re-
cently, a new framework for relativistic perfect fluid hydrodynamics of spin-
polarized media was presented [6–9], which extends the work of Refs. [4,5] to
systems in local equilibrium. In this contribution, we discuss the approach
presented in Refs. [6–9] and study its physical consequences.
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2. Local equilibrium distribution functions

Following Refs. [6–9], we consider a local equilibrium state of a relativistic
system of particles (+) and antiparticles (−) with spin 1/2 and massm, whose
phase-space distribution functions are given by the spin density matrices
(r, s = 1, 2) [5]

f+rs(x, p) = ūr(p)X
+us(p) , f−rs(x, p) = −v̄s(p)X−vr(p) . (1)

Here, ur(p) and vr(p) are Dirac bispinors and X± are four-by-four matrices

X± = exp

[
±ξ(x)− βµ(x)pµ ± 1

2
ωµν(x)Σµν

]
, (2)

where ξ ≡ µ/T , βµ ≡ uµ/T , and T , µ and uµ denote the temperature,
baryon chemical potential and four-velocity of the fluid, respectively. The
quantity ωµν is the spin polarization tensor and Σµν ≡ 1

2σ
µν = i

4 [γµ, γν ] is
the spin operator. For later convenience, it is useful to define the quantity
ζ ≡ 1

2
√
2

√
ωµνωµν , assuming that εαβγδωαβωγδ = 0.

3. Thermodynamics of the spin-polarized medium

With the distribution functions (1) being defined, it is straightforward to
obtain the basic thermodynamic variables describing the system in question.
In particular, using definitions from Refs. [5, 10], one finds the following fa-
miliar expressions for the baryon current and the energy-momentum tensor:

Nµ = κ

∫
d3p

2Ep
pµ
[
tr4(X

+)− tr4(X
−)
]

= nuµ , (3)

Tµν = κ

∫
d3p

2Ep
pµpν

[
tr4(X

+) + tr4(X
−)
]

= (ε+ P )uµuν − Pgµν . (4)

In Eqs. (3)–(4), the factor κ ≡ g/(2π)3 accounts for internal degrees of
freedom excluding spin, tr4 denotes the trace in the spinor space, and
gµν = diag(+1,−1,−1,−1) is the metric tensor. Generalizing the Boltz-
mann expression for the entropy current, one also finds

Sµ = −κ
∫

d3p

2Ep
pµ
{

tr4[X
+(lnX+ − 1)] + tr4[X

−(lnX− − 1)]
}

= suµ . (5)

In Eqs. (3)–(5), the energy density, ε=4 cosh(ζ) cosh(ξ)ε(0)(T ), the pressure,
P =4 cosh(ζ) cosh(ξ)P(0)(T ), the baryon density, n=4 cosh(ζ) sinh(ξ)n(0)(T ),
and the entropy density, s = 4 cosh(ζ) cosh(ξ)s(0)(T ), are all related by the
thermodynamic relation ε+P = sT +µn+Ωw. Here, we introduced a new
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variable, playing the role of a spin chemical potential Ω ≡ ζT , and, related
to it, a new charge, w = 4 sinh(ζ) cosh(ξ)n(0)(T ). The thermodynamic po-
tentials are expressed in terms of those corresponding to an auxiliary system
of spin-0 particles

n(0)(T ) = 〈(u · p)〉0 =
κ

2π2
T 3 m̂2K2 (m̂) ,

ε(0)(T ) =
〈
(u · p)2

〉
0

=
κ

2π2
T 4 m̂2

[
3K2 (m̂) + m̂K1 (m̂)

]
,

P(0)(T ) = −1

3

〈[
p · p− (u · p)2

]〉
0

= T n(0)(T ) ,

where s(0)(T ) = 1
T

[
ε(0)(T ) + P(0)(T )

]
and m̂ ≡ m/T .

4. Fluid dynamics equations

In fluid dynamics, the space-time-dependent quantities µ(x), T (x), uµ(x)
and ωµ(x) in Eq. (2) play a role of Lagrange multipliers, whose form should
follow from the evolution equations. In particular, the requirement of energy
and momentum conservation, ∂µTµν = 0, when projected onto directions
orthogonal to the fluid flow, yields the three Euler equations

(ε+ P )u̇µ = ∂µP − uµṖ , (6)

where θ ≡ ∂ ·u is the expansion scalar and ˙( ) ≡ u ·∂ denotes the comoving
derivative. On the other hand, by projecting the energy and momentum
conservation equation onto the fluid four velocity uµ(x), and using the dif-
ferentials of the pressure P = P (T, µ,Ω), one obtains

T∂µ(suµ) + µ∂µ(nuµ) +Ω ∂µ(wuµ) = 0 . (7)

By requiring that the first two terms vanish due to the conservation of en-
tropy and baryon number, respectively, Eq. (7) yields three separate condi-
tions

∂µS
µ = ṡ+ s θ = 0 , (8)

∂µN
µ = ṅ+ n θ = 0 , (9)

∂µW
µ = ∂µ(wuµ) = ẇ + w θ = 0 . (10)

5. Polarization dynamics

Equations (6), (8), (9) and (10) form a closed set of six differential
equations, which allow one to determine time evolution of µ(x), T (x), the
three independent components of uµ(x) and Ω(x) ≡ T

2
√
2

√
ωµνωµν . We
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are thus left with four independent components of the polarization tensor,
whose evolution does not influence the hydrodynamic background. The
equations of motion for the polarization tensor follow from the angular mo-
mentum conservation law ∂αJ

α,βγ = 0, with Jα,βγ = Lα,βγ + Sα,βγ , where
Lα,βγ = xβT γα − xγT βα is the orbital angular momentum tensor and Sα,βγ
is the spin tensor. Since Tµν given in Eq. (4) is symmetric, one has [11]

∂αS
α,βγ = 0 . (11)

For the internal consistency of the approach, we assume that the spin
tensor has the following form [4]:

Sλ,µν = κ

∫
d3p

2Ep
pλ tr4

[
(X+−X−)Σµν

]
=
wuλ

4ζ
ωµν . (12)

By introducing the rescaled spin polarization tensor, ω̄µν = ωµν/(2ζ) and
using Eq. (10), one arrives at the formula

˙̄ωµν = 0 . (13)

Equation (13) states that the scaled components of the polarization tensor
are conserved in the comoving frame.

6. Stability of the stationary vortex solution

In Refs. [6, 8], it was shown that Eqs. (6), (8), (9) and (10) have the
following stationary vortex-like solution, representing a global equilibrium
state with rotation [4, 5]:

uµ = γ
(

1,−Ω̃ y, Ω̃ x, 0
)
, (14)

T = T0γ , µ = µ0γ , Ω = Ω0γ , (15)

where γ = 1/
√

1− Ω̃2r2 is the Lorentz factor, r =
√
x2 + y2 and T0, µ0,

and Ω0 are arbitrary constants. The corresponding polarization tensor is in
this case either zero or has a form where the only non-vanishing component
is ωxy = −ωyx = Ω̃/T0 = 2Ω0/T0.

One may notice that, due to the limiting speed of light, the stationary
solution may be realized only within a cylinder of a finite radius R < 1/Ω̃.
It is difficult to imagine how a corresponding boundary condition could be
implemented in Nature. Using the approach presented above, we explore the
evolution of such a vortex, with more realistic boundary conditions numer-
ically. To that end, we set up the initial conditions for the system in such
a way that it reproduces the stationary vortex solution (dash-dotted blue
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lines) within a central region (small r), and departs from it at the edges, as
illustrated in Fig. 1 (solid red lines). By letting the system evolve in time,
we find that relaxing the boundary conditions causes the system to depart
from the global equilibrium solution. Thus, our results indicate that, with
realistic boundary conditions, the vortex solution is unstable.
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Fig. 1. (Color online) Space (r) dependence of the temperature, and velocity mag-
nitude v =

√
v2x + v2y at times: t = 0.1, 2, 4, 6, 8, 10 fm (color of the lines changing

from red to black as the time increases).

7. Summary

Using the framework of perfect fluid hydrodynamics of particles with
spin 1/2, we studied the stability of the stationary vortex-like solution rep-
resenting the global equilibrium state of such a system. We find that with
more realistic boundary conditions, the stationary solution is unstable. Con-
sequently, it is rather unlikely that such a stationary state is realized in
Nature.
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