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CREATES THE SAME MIXING ANGLE θ VALUE∗
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The inverse relations of the four independent couples of physically ac-
ceptable ω–φ mixing forms give expressions for ω8 and ω0 as functions of
the unknown mixing angle θ and physical states ω and φ. Substituting
for expressions obtained in such a way for ω8 repeatedly into Gell-Mann–
Okubo quadratic mass relation, which yields quadratic mass of m2

ω8
as a

combination of quadratic masses of K∗(980) and ρ0(770) vector mesons,
always determines the same value of mixing angle θ. Next, the same result
is obtained also by using all physically non-acceptable ω–φ mixing forms.
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1. Introduction

In [1], we have demonstrated that there are generally eight possible ω–φ
mixing forms

1. ω = ω8 sin θ + ω0 cos θ , φ = −ω8 cos θ + ω0 sin θ ,

2. ω = −ω8 sin θ + ω0 cos θ , φ = −ω8 cos θ − ω0 sin θ ,

3. ω = ω8 sin θ − ω0 cos θ , φ = ω8 cos θ + ω0 sin θ ,

4. ω = −ω8 sin θ − ω0 cos θ , φ = ω8 cos θ − ω0 sin θ ,

5. ω = ω8 sin θ + ω0 cos θ , φ = ω8 cos θ − ω0 sin θ ,
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6. ω = −ω8 sin θ + ω0 cos θ , φ = ω8 cos θ + ω0 sin θ ,

7. ω = ω8 sin θ − ω0 cos θ , φ = −ω8 cos θ − ω0 sin θ ,

8. ω = −ω8 sin θ − ω0 cos θ , φ = −ω8 cos θ + ω0 sin θ (1)

from which only four, to be denoted by

1. ω = ω8 sin θ + ω0 cos θ ,

φ = −ω8 cos θ + ω0 sin θ ,

4. ω = −ω8 sin θ − ω0 cos θ ,

φ = ω8 cos θ − ω0 sin θ ,

5. ω = ω8 sin θ + ω0 cos θ ,

φ = ω8 cos θ − ω0 sin θ ,

8. ω = −ω8 sin θ − ω0 cos θ ,

φ = −ω8 cos θ + ω0 sin θ (2)

are physically acceptable.
That is one considerable result of our investigations.
Another one is demonstrated in this contribution and it concerns of a

determination of the ω–φ mixing angle θ value by using the Gell-Mann–
Okubo quadratic mass relation.

Further, it will be clearly exhibited that arbitrary ω–φ mixing form,
physically acceptable or physically non-acceptable, to be applied in Gell-
Mann–Okubo quadratic mass relation of 1− vector mesons, creates for mix-
ing angle θ the same value.

2. Gell-Mann–Okubo quadratic mass relation

An application of the SU(3) symmetry to a classification of mesons and
baryons revealed an existence of the “quarks”, and induced the idea that
“mesons” are bound states of quarks and antiquarks, and “baryons” are com-
pound of 3 quarks.

Moreover, experimentally observed hadrons with similar properties are,
according to irreducible representations of the SU(3) group, arranged into
octuplets, decuplets, 27plets, 35plets etc.

As it is well-known, e.g. the nonet of 1− vector mesons can be represented
by 3× 3 octet matrix and a singlet ω0 of the form of

V =

 ω8/
√

6 + ρ0/
√

2 ρ+ K∗+

ρ− ω8/
√

6− ρ0/
√

2 K∗0

K∗− K̄∗0 −2ω8/
√

6

 , ω0 . (3)
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The mass of every vector meson from matrix (3) can be generally expressed
through its quantum numbers, such as strangenes S and isospin I, which
leads to the following Gell-Mann–Okubo quadratic mass relation:

m2(ω8) =
4
m2(K∗0)+m2(K̄∗0)

2 −m2
(
ρ0
)

3
= (932.14 MeV)2 , (4)

which next is used for a determination of the ω–φ mixing angle θ value.

3. Determination of the ω–φ mixing angle value

As the unitary singlet is denoted by ω0 and the unitary octet by ω8,
K∗, K̄∗, ρ, then physically acceptable mixing forms between ω, φ and ω8, ω0

exist as they are presented by (2).
The reversed relations to the mixing forms (2) are obtained by solutions

always of the two algebraic equations 1, 4, 5 and 8, with two unknowns, ω8

and ω0, and as a result, one gets

1. ω0 = ω cos θ + φ sin θ ,

ω8 = ω sin θ − φ cos θ ,

4. ω0 = −ω cos θ − φ sin θ ,

ω8 = −ω sin θ + φ cos θ ,

5. ω0 = ω cos θ − φ sin θ ,

ω8 = ω sin θ + φ cos θ ,

8. ω0 = −ω cos θ + φ sin θ ,

ω8 = −ω sin θ − φ cos θ . (5)

If orthogonal states |ω〉 and |φ〉 are “eigenfunctions” of the quadratic
mass operatorM2, then the non-diagonal matrix elements are equal to zero

〈ω|M2|φ〉 = 〈φ|M2|ω〉 = 0 . (6)

Then utilizing from the first relation of (5) for |ω8〉 the expression ω8

1. a calculation of the mass squared of the ω8 particle gives

m2(ω8) = 〈ω8|M2|ω8〉
= (sin θ〈ω| − cos θ〈φ|)M2(|ω〉 sin θ − |φ〉 cos θ)

= sin2 θ〈ω|M2|ω〉+ cos2 θ〈φ|M2|φ〉
− sin θ cos θ〈ω|M2|φ〉 − cos θ sin θ〈φ|M2|ω〉 (7)

and exploiting (6), finally, one gets

m2(ω8) = m2(ω) sin2 θ +m2(φ) cos2 θ . (8)
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If from the second relation of (5) for |ω8〉, the expression ω8 is used

4. a calculation of the mass squared of the ω8 particle gives

m2(ω8) = 〈ω8|M2|ω8〉
= (− sin θ〈ω|+ cos θ〈φ|)M2(−|ω〉 sin θ + |φ〉 cos θ)

= sin2 θ〈ω|M2|ω〉+ cos2 θ〈φ|M2|φ〉
− sin θ cos θ〈ω|M2|φ〉 − cos θ sin θ〈φ|M2|ω〉 (9)

and exploiting (6), finally, one gets

m2(ω8) = m2(ω) sin2 θ +m2(φ) cos2 θ . (10)

If from the third relation of (5) for |ω8〉, the expression ω8 is used

5. a calculation of the mass squared of the ω8 particle gives

m2(ω8) = 〈ω8|M2|ω8〉
= (sin θ〈ω|+ cos θ〈φ|)M2(|ω〉 sin θ + |φ〉 cos θ)

= sin2 θ〈ω|M2|ω〉+ cos2 θ〈φ|M2|φ〉
+ sin θ cos θ〈ω|M2|φ〉+ cos θ sin θ〈φ|M2|ω〉 (11)

and exploiting (6), finally, one gets

m2(ω8) = m2(ω) sin2 θ +m2(φ) cos2 θ . (12)

If from the fourth relation of (5) for |ω8〉, the expression ω8 is used

8. a calculation of the mass squared of the ω8 particle gives

m2(ω8) = 〈ω8|M2|ω8〉
= (− sin θ〈ω| − cos θ〈φ|)M2(−|ω〉 sin θ − |φ〉 cos θ)

= sin2 θ〈ω|M2|ω〉+ cos2 θ〈φ|M2|φ〉
+ sin θ cos θ〈ω|M2|φ〉+ cos θ sin θ〈φ|M2|ω〉 (13)

and exploiting (6), finally, one gets

m2(ω8) = m2(ω) sin2 θ +m2(Φ) cos2 θ . (14)

If the masses of ω8, ω(782), φ(1020) are taken from [2]

m(ω8) = 932.14 MeV , (15)
m(ω) = 782.65 MeV , (16)
m(φ) = 1019.462 MeV , (17)
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then from four previous identical relations, by means of the expression

sin2 θ =
m2(φ)−m2(ω8)

m2(φ)−m2(ω)
, (18)

one obtains
θ = sin−1 0.63192 = 39.19◦

and, in this way, we have demonstrated that the ω–φ mixing angle θ value
does not depend on the physically acceptable ω–φ mixing forms.

In a similar way, one can convince himself that the θ-value does not even
depend on the physically non-acceptable ω–φ mixing forms and is also equal
to θ = sin−1 0.63192 = 39.19◦.

There is a question: In which physical “circumstances” the physically
acceptable forms of ω–φ mixing and physically non-acceptable forms of ω–φ
mixing will produce different results.

This question will be a subject of our further investigations.

4. Conclusions

Starting from the physically acceptable ω–φ mixing forms, calculating
their reversed relations and exploiting the Gell-Mann–Okubo quadratic mass
formula for 1− octet of vector mesons, the ω–φ mixing angle θ = 39.19◦ has
been determined.

However, subsequently it was verified that this result is valid without any
specification to physically acceptable, or physically non-acceptable, mixing
forms.

The problem is, however, arisen in the calculation of the mixing angle θ′
for the first excited states of vector mesons, where a substitution of the
concerned particle masses into (18) gives sin2 θ′ = 1.011 > 1.

In the evaluation of θ′′, the following value sin2 θ′′ = 0.9223 is found,
from which the value θ′′ = sin−1 0.96 = 73.81◦ is determined.
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