ARBITRARY $\omega-\phi$ MIXING FORM IN GELL-MANN-OKUBO QUADRATIC MASS RELATION CREATES THE SAME MIXING ANGLE θ VALUE*

Anna Zuzana Dubnickova
Department of Theoretical Physics, Comenius University, Bratislava, Slovakia
Stanislav Dubnicka
Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

(Received August 7, 2018)

The inverse relations of the four independent couples of physically acceptable $\omega-\phi$ mixing forms give expressions for ω_{8} and ω_{0} as functions of the unknown mixing angle θ and physical states ω and ϕ. Substituting for expressions obtained in such a way for ω_{8} repeatedly into Gell-MannOkubo quadratic mass relation, which yields quadratic mass of $m_{\omega_{8}}^{2}$ as a combination of quadratic masses of $K^{*}(980)$ and $\rho^{0}(770)$ vector mesons, always determines the same value of mixing angle θ. Next, the same result is obtained also by using all physically non-acceptable $\omega-\phi$ mixing forms.

DOI:10.5506/APhysPolBSupp.11.525

1. Introduction

In [1], we have demonstrated that there are generally eight possible $\omega-\phi$ mixing forms

$$
\begin{array}{ll}
\text { 1. } \quad \omega=\omega_{8} \sin \theta+\omega_{0} \cos \theta, & \phi=-\omega_{8} \cos \theta+\omega_{0} \sin \theta, \\
\text { 2. } \quad \omega=-\omega_{8} \sin \theta+\omega_{0} \cos \theta, & \phi=-\omega_{8} \cos \theta-\omega_{0} \sin \theta, \\
\text { 3. } \quad \omega=\omega_{8} \sin \theta-\omega_{0} \cos \theta, & \phi=\omega_{8} \cos \theta+\omega_{0} \sin \theta, \\
4 . \quad \omega=-\omega_{8} \sin \theta-\omega_{0} \cos \theta, & \phi=\omega_{8} \cos \theta-\omega_{0} \sin \theta, \\
5 . \quad \omega=\omega_{8} \sin \theta+\omega_{0} \cos \theta, & \phi=\omega_{8} \cos \theta-\omega_{0} \sin \theta,
\end{array}
$$

[^0]\[

$$
\begin{array}{ll}
\text { 6. } \quad \omega=-\omega_{8} \sin \theta+\omega_{0} \cos \theta, & \phi=\omega_{8} \cos \theta+\omega_{0} \sin \theta, \\
\text { 7. } \quad \omega=\omega_{8} \sin \theta-\omega_{0} \cos \theta, & \phi=-\omega_{8} \cos \theta-\omega_{0} \sin \theta, \\
8 . \quad \omega=-\omega_{8} \sin \theta-\omega_{0} \cos \theta, & \phi=-\omega_{8} \cos \theta+\omega_{0} \sin \theta \tag{1}
\end{array}
$$
\]

from which only four, to be denoted by

1. $\omega=\omega_{8} \sin \theta+\omega_{0} \cos \theta$, $\phi=-\omega_{8} \cos \theta+\omega_{0} \sin \theta$,
2. $\omega=-\omega_{8} \sin \theta-\omega_{0} \cos \theta$, $\phi=\omega_{8} \cos \theta-\omega_{0} \sin \theta$,
3. $\omega=\omega_{8} \sin \theta+\omega_{0} \cos \theta$, $\phi=\omega_{8} \cos \theta-\omega_{0} \sin \theta$,
4. $\omega=-\omega_{8} \sin \theta-\omega_{0} \cos \theta$, $\phi=-\omega_{8} \cos \theta+\omega_{0} \sin \theta$
are physically acceptable.
That is one considerable result of our investigations.
Another one is demonstrated in this contribution and it concerns of a determination of the $\omega-\phi$ mixing angle θ value by using the Gell-MannOkubo quadratic mass relation.

Further, it will be clearly exhibited that arbitrary $\omega-\phi$ mixing form, physically acceptable or physically non-acceptable, to be applied in Gell-Mann-Okubo quadratic mass relation of 1^{-}vector mesons, creates for mixing angle θ the same value.

2. Gell-Mann-Okubo quadratic mass relation

An application of the $S U(3)$ symmetry to a classification of mesons and baryons revealed an existence of the "quarks", and induced the idea that "mesons" are bound states of quarks and antiquarks, and "baryons" are compound of 3 quarks.

Moreover, experimentally observed hadrons with similar properties are, according to irreducible representations of the $\mathrm{SU}(3)$ group, arranged into octuplets, decuplets, 27plets, 35plets etc.

As it is well-known, e.g. the nonet of 1^{-}vector mesons can be represented by 3×3 octet matrix and a singlet ω_{0} of the form of

$$
V=\left(\begin{array}{ccc}
\omega_{8} / \sqrt{6}+\rho^{0} / \sqrt{2} & \rho^{+} & K^{*+} \tag{3}\\
\rho^{-} & \omega_{8} / \sqrt{6}-\rho^{0} / \sqrt{2} & K^{* 0} \\
K^{*-} & \bar{K}^{* 0} & -2 \omega_{8} / \sqrt{6}
\end{array}\right), \omega_{0} .
$$

The mass of every vector meson from matrix (3) can be generally expressed through its quantum numbers, such as strangenes S and isospin I, which leads to the following Gell-Mann-Okubo quadratic mass relation:

$$
\begin{equation*}
m^{2}\left(\omega_{8}\right)=\frac{4 \frac{m^{2}\left(K^{* 0}\right)+m^{2}\left(\bar{K}^{* 0}\right)}{2}-m^{2}\left(\rho^{0}\right)}{3}=(932.14 \mathrm{MeV})^{2} \tag{4}
\end{equation*}
$$

which next is used for a determination of the $\omega-\phi$ mixing angle θ value.

3. Determination of the $\boldsymbol{\omega}-\boldsymbol{\phi}$ mixing angle value

As the unitary singlet is denoted by ω_{0} and the unitary octet by ω_{8}, K^{*}, \bar{K}^{*}, ρ, then physically acceptable mixing forms between ω, ϕ and ω_{8}, ω_{0} exist as they are presented by (2).

The reversed relations to the mixing forms (2) are obtained by solutions always of the two algebraic equations $1,4,5$ and 8 , with two unknowns, ω_{8} and ω_{0}, and as a result, one gets

$$
\begin{array}{ll}
\text { 1. } & \omega_{0}=\omega \cos \theta+\phi \sin \theta, \\
& \omega_{8}=\omega \sin \theta-\phi \cos \theta, \\
\text { 4. } & \omega_{0}=-\omega \cos \theta-\phi \sin \theta, \\
& \omega_{8}=-\omega \sin \theta+\phi \cos \theta, \\
\text { 5. } & \omega_{0}=\omega \cos \theta-\phi \sin \theta, \\
& \omega_{8}=\omega \sin \theta+\phi \cos \theta, \\
\text { 8. } & \omega_{0}=-\omega \cos \theta+\phi \sin \theta, \\
& \omega_{8}=-\omega \sin \theta-\phi \cos \theta . \tag{5}
\end{array}
$$

If orthogonal states $|\omega\rangle$ and $|\phi\rangle$ are "eigenfunctions" of the quadratic mass operator \mathcal{M}^{2}, then the non-diagonal matrix elements are equal to zero

$$
\begin{equation*}
\langle\omega| \mathcal{M}^{2}|\phi\rangle=\langle\phi| \mathcal{M}^{2}|\omega\rangle=0 . \tag{6}
\end{equation*}
$$

Then utilizing from the first relation of (5) for $\left|\omega_{8}\right\rangle$ the expression ω_{8}

1. a calculation of the mass squared of the ω_{8} particle gives

$$
\begin{align*}
m^{2}\left(\omega_{8}\right)= & \left\langle\omega_{8}\right| \mathcal{M}^{2}\left|\omega_{8}\right\rangle \\
= & (\sin \theta\langle\omega|-\cos \theta\langle\phi|) \mathcal{M}^{2}(|\omega\rangle \sin \theta-|\phi\rangle \cos \theta) \\
= & \sin ^{2} \theta\langle\omega| \mathcal{M}^{2}|\omega\rangle+\cos ^{2} \theta\langle\phi| \mathcal{M}^{2}|\phi\rangle \\
& -\sin \theta \cos \theta\langle\omega| \mathcal{M}^{2}|\phi\rangle-\cos \theta \sin \theta\langle\phi| \mathcal{M}^{2}|\omega\rangle \tag{7}
\end{align*}
$$

and exploiting (6), finally, one gets

$$
\begin{equation*}
m^{2}\left(\omega_{8}\right)=m^{2}(\omega) \sin ^{2} \theta+m^{2}(\phi) \cos ^{2} \theta \tag{8}
\end{equation*}
$$

If from the second relation of (5) for $\left|\omega_{8}\right\rangle$, the expression ω_{8} is used
4. a calculation of the mass squared of the ω_{8} particle gives

$$
\begin{align*}
m^{2}\left(\omega_{8}\right)= & \left\langle\omega_{8}\right| \mathcal{M}^{2}\left|\omega_{8}\right\rangle \\
= & (-\sin \theta\langle\omega|+\cos \theta\langle\phi|) \mathcal{M}^{2}(-|\omega\rangle \sin \theta+|\phi\rangle \cos \theta) \\
= & \sin ^{2} \theta\langle\omega| \mathcal{M}^{2}|\omega\rangle+\cos ^{2} \theta\langle\phi| \mathcal{M}^{2}|\phi\rangle \\
& -\sin \theta \cos \theta\langle\omega| \mathcal{M}^{2}|\phi\rangle-\cos \theta \sin \theta\langle\phi| \mathcal{M}^{2}|\omega\rangle \tag{9}
\end{align*}
$$

and exploiting (6), finally, one gets

$$
\begin{equation*}
m^{2}\left(\omega_{8}\right)=m^{2}(\omega) \sin ^{2} \theta+m^{2}(\phi) \cos ^{2} \theta \tag{10}
\end{equation*}
$$

If from the third relation of (5) for $\left|\omega_{8}\right\rangle$, the expression ω_{8} is used
5. a calculation of the mass squared of the ω_{8} particle gives

$$
\begin{align*}
m^{2}\left(\omega_{8}\right)= & \left\langle\omega_{8}\right| \mathcal{M}^{2}\left|\omega_{8}\right\rangle \\
= & (\sin \theta\langle\omega|+\cos \theta\langle\phi|) \mathcal{M}^{2}(|\omega\rangle \sin \theta+|\phi\rangle \cos \theta) \\
= & \sin ^{2} \theta\langle\omega| \mathcal{M}^{2}|\omega\rangle+\cos ^{2} \theta\langle\phi| \mathcal{M}^{2}|\phi\rangle \\
& +\sin \theta \cos \theta\langle\omega| \mathcal{M}^{2}|\phi\rangle+\cos \theta \sin \theta\langle\phi| \mathcal{M}^{2}|\omega\rangle \tag{11}
\end{align*}
$$

and exploiting (6), finally, one gets

$$
\begin{equation*}
m^{2}\left(\omega_{8}\right)=m^{2}(\omega) \sin ^{2} \theta+m^{2}(\phi) \cos ^{2} \theta \tag{12}
\end{equation*}
$$

If from the fourth relation of (5) for $\left|\omega_{8}\right\rangle$, the expression ω_{8} is used
8. a calculation of the mass squared of the ω_{8} particle gives

$$
\begin{align*}
m^{2}\left(\omega_{8}\right)= & \left\langle\omega_{8}\right| \mathcal{M}^{2}\left|\omega_{8}\right\rangle \\
= & (-\sin \theta\langle\omega|-\cos \theta\langle\phi|) \mathcal{M}^{2}(-|\omega\rangle \sin \theta-|\phi\rangle \cos \theta) \\
= & \sin ^{2} \theta\langle\omega| \mathcal{M}^{2}|\omega\rangle+\cos ^{2} \theta\langle\phi| \mathcal{M}^{2}|\phi\rangle \\
& +\sin \theta \cos \theta\langle\omega| \mathcal{M}^{2}|\phi\rangle+\cos \theta \sin \theta\langle\phi| \mathcal{M}^{2}|\omega\rangle \tag{13}
\end{align*}
$$

and exploiting (6), finally, one gets

$$
\begin{equation*}
m^{2}\left(\omega_{8}\right)=m^{2}(\omega) \sin ^{2} \theta+m^{2}(\Phi) \cos ^{2} \theta \tag{14}
\end{equation*}
$$

If the masses of $\omega_{8}, \omega(782), \phi(1020)$ are taken from [2]

$$
\begin{align*}
m\left(\omega_{8}\right) & =932.14 \mathrm{MeV} \tag{15}\\
m(\omega) & =782.65 \mathrm{MeV} \tag{16}\\
m(\phi) & =1019.462 \mathrm{MeV} \tag{17}
\end{align*}
$$

then from four previous identical relations, by means of the expression

$$
\begin{equation*}
\sin ^{2} \theta=\frac{m^{2}(\phi)-m^{2}\left(\omega_{8}\right)}{m^{2}(\phi)-m^{2}(\omega)} \tag{18}
\end{equation*}
$$

one obtains

$$
\theta=\sin ^{-1} 0.63192=39.19^{\circ}
$$

and, in this way, we have demonstrated that the $\omega-\phi$ mixing angle θ value does not depend on the physically acceptable $\omega-\phi$ mixing forms.

In a similar way, one can convince himself that the θ-value does not even depend on the physically non-acceptable $\omega-\phi$ mixing forms and is also equal to $\theta=\sin ^{-1} 0.63192=39.19^{\circ}$.

There is a question: In which physical "circumstances" the physically acceptable forms of $\omega-\phi$ mixing and physically non-acceptable forms of $\omega-\phi$ mixing will produce different results.

This question will be a subject of our further investigations.

4. Conclusions

Starting from the physically acceptable $\omega-\phi$ mixing forms, calculating their reversed relations and exploiting the Gell-Mann-Okubo quadratic mass formula for 1^{-}octet of vector mesons, the $\omega-\phi$ mixing angle $\theta=39.19^{\circ}$ has been determined.

However, subsequently it was verified that this result is valid without any specification to physically acceptable, or physically non-acceptable, mixing forms.

The problem is, however, arisen in the calculation of the mixing angle θ^{\prime} for the first excited states of vector mesons, where a substitution of the concerned particle masses into (18) gives $\sin ^{2} \theta^{\prime}=1.011>1$.

In the evaluation of $\theta^{\prime \prime}$, the following value $\sin ^{2} \theta^{\prime \prime}=0.9223$ is found, from which the value $\theta^{\prime \prime}=\sin ^{-1} 0.96=73.81^{\circ}$ is determined.

The work was supported by the VEGA grant No. 2/0153/17.

REFERENCES

[1] C. Adamuscin, E. Bartos, S. Dubnicka, A.Z. Dubnickova, Acta Phys. Pol. B Proc. Suppl. 11, 519 (2018), this issue.
[2] C. Patrignani et al. [Particle Data Group], Chin. Phys. C 40, 100001 (2016).

[^0]: * Presented at "Excited QCD 2018", Kopaonik, Serbia, March 11-15, 2018.

