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THE QCD PHASE DIAGRAM FROM THE LATTICE∗
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We present a phase diagram of effective Polyakov line actions, derived
from the SU(3) lattice gauge theory with 695 MeV dynamical staggered
quarks. We find a phase-transition line in the temperature–density plane.
The derivation is via the method of relative weights and the effective the-
ories are solved at finite chemical potential by mean-field theory.
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1. Introduction

One of the most active areas in strong-interaction physics concerns the
behavior of QCD in extreme conditions, i.e. high temperature and/or high
baryon density. At high temperatures, we enter the realm of the quark–gluon
plasma, whose properties have been or will be probed by experiments at
RHIC, the LHC, and the FAIR facility (now under construction). Not much
is known for sure about hadronic matter at high baryon density. QCD is be-
lieved to have a complex phase structure in the temperature-density plane,
and a number of exotic phases (quarkyonic, glasma, color–flavor locked su-
perconductor etc.) have been suggested. One would especially like to know
the position of the critical endpoint of the confinement–deconfinement tran-
sition. Many talks on the subject of QCD in extreme environments begin
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with a sketch of the possible phase diagram, but such sketches are, so far,
all conjecture. Nobody knows whether these exotic phases really exist, or
exactly where they are located in the temperature/density plane. So the
first order of business, for a theorist, is to nail down the phase diagram.

By far, the most important tool in the investigation of non-perturbative
QCD is the method of importance sampling in lattice Monte Carlo simula-
tions. However, when one attempts to apply this tool to study QCD at high
baryon density, a serious obstacle — the “sign problem” — is encountered.
Different strategies were explored, and the reviews at the yearly lattice con-
ferences [1–10] summarize the progress. Finite densities are introduced in
statistical systems via the introduction of a chemical potential, but when
this standard method is applied in QCD, the fermion determinant becomes
complex and cannot be interpreted as a probability measure. Then standard
importance sampling, e.g. via the hybrid Monte Carlo method, breaks down
completely, and some other method or methods must be devised to handle
the problem of complex actions.

Our approach to the sign problem in QCD is to map QCD with a chem-
ical potential into a simpler effective theory, namely, the effective Polyakov
line action (henceforth “PLA”), via the relative weights method and then deal
with the sign problem via mean-field theory, which is a surprisingly accurate
method for solving effective actions of this kind [11]. The phase diagram of
the effective theory will mirror the phase diagram of the underlying gauge
theory. The method was successfully tested in SU(2) and SU(3) pure gauge
and gauge-Higgs theories [12–14], and first results with dynamical fermions
were presented in [15–19].

2. Formalism and methodology

The effective Polyakov line action SP is the theory obtained by inte-
grating out all degrees of freedom of the lattice gauge theory, under the
constraint that the Polyakov line holonomies are held fixed. It is convenient
to implement this constraint in temporal gauge (U0(x, t 6= 0) = 1), so that

exp
[
SP

[
U~x, U

†
~x

]]
=

∫
DU0(~x, 0)DUkDφ

{∏
~x

δ [U~x − U0(~x, 0)]

}
eSL , (1)

where φ denotes any matter fields, scalar or fermionic, coupled to the gauge
field, and SL is the SU(3) lattice action. To all orders in a strong-coupling/
hopping parameter expansion, the relationship between the PLA at zero
chemical potential µ = 0, and the PLA corresponding to a lattice gauge
theory at finite chemical potential, is given by

SµP

[
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†
~x

]
= Sµ=0

P

[
eNtµU~x, e

−NtµU †~x

]
. (2)
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So the immediate problem is to determine the PLA at µ = 0. Let us define
the Polyakov line in an SU(N) theory to refer to the trace of the Polyakov
line holonomy P~x ≡ 1

NTr[U~x]. Relative weights enable us to compute the
derivative of the effective action SP along any path(

dSP

dλ

)
λ=λ0

≈ ∆SP

∆λ
(3)

at any point {U~x(λ0)} in the configuration space of all U~x on the lattice vol-
ume, parametrized by λ. We compute the derivatives of the effective action,
by the relative weights method, with respect to the Fourier (“momentum”)
components a~k of the Polyakov line configurations P~x =

∑
~k
a~ke

i~k·~x. The
procedure is to run a standard Monte Carlo simulation, generate a configu-
ration of Polyakov line holonomies U~x, and compute the Polyakov lines P~x.
We then set the momentum mode a~k = 0 in this configuration to zero, re-

sulting in the modified configuration P̃~x = P~x−
(

1
L3

∑
~y P~ye

−i~k·~y
)
ei
~k·~x, and

define

P ′′~x =

(
α− 1

2
∆α

)
ei
~k·~x + fP̃x , P ′~x =

(
α+

1

2
∆α

)
ei
~k·~x + fP̃x , (4)

where f is a constant close to one (f = 1 is only possible in the large vol-
ume, α → 0 limit). From the holonomy configurations U ′′x , U ′x, we compute
derivatives of SP with respect to the real part aR

~k
of the Fourier components

a~k by defining ∆SP = SP[U ′~x]− SP[U ′′~x ], hence we have from (1)

e∆SP =

∫
DUkDφe

S′L∫
DUkDφe

S′′L
=

∫
DUkDφ exp [S′L − S′′L] eS

′′
L∫

DUkDφe
S′′L

=
〈
exp

[
S′L − S′′L

]〉′′
.

(5)
The expectation value is straightforward to compute numerically, by fixing
the Polyakov holonomies and calculating the action differences, and from the
logarithm, we determine ∆SP. Our proposal is to fit the relative weights
data to an Ansatz for SP based on the massive quark effective action [20]

SP[U~x] =
∑
~x,~y

P~xK(~x− ~y )P~y

+p
∑
~x

{
log
(

1 + heµ/TTr[U~x] + h2e2µ/TTr
[
U †~x

]
+ h3e3µ/T

)
+ log

(
1 + he−µ/TTr[U~x] + h2e−2µ/TTr

[
U †~x

]
+ h3e−3µ/T

)}
, (6)

where both the kernelK(~x−~y ) and the parameter h are to be determined by
the relative weights method. The full action is surely more complicated than
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this Ansatz; the assumption is that these terms in the action are dominant,
and the effect of a lighter quark mass is mainly absorbed into the parameter h
and kernel K(~x−~y ). We then have the derivative of the action with respect
to momentum modes a~k of the Polyakov lines

1

L3

(
∂SP

∂aR
~k

)
a~k=α

= 2K̃
(
~k
)
α+

p

L3

∑
~x

(
3hei

~k·~x + 3h2e−i
~k·~x + c.c.

)
. (7)

The left-hand side is computed via relative weights at a variety of α =

0.01, . . . , 0.06, and plotting those results vs. α, K(~k) is determined from
the slope, while h is given by the intercept at α = 0 from the zero mode
k = 0, since the second term vanishes for k 6= 0. From the kernel K(~k)
in the momentum space, we derive the kernel K(~x− ~y ) via inverse Fourier
transformation and find that it basically vanishes above r ≈ 4.6, see fig-
ure 1 (a), hence we introduce a cutoff Rcut and set the kernel to zero for
r > Rcut = 4.6.
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Fig. 1. (a) The kernel K(r) = K(~x − ~y ) of the PLA for various lattice sizes and
an infinite volume fit. (b) Polyakov line correlators from the lattice and PLA
simulations.

3. Results from mean-field theory

We derive effective Polyakov line actions from lattice simulations of
Wilson gauge action and dynamical staggered fermions, for a variety of
temperatures and lattice masses corresponding to a physical quark mass
mq = 695 MeV. A first consistency check of our PLA simulations is that
we reproduce the correct Polyakov line correlator of the underlying lattice
gauge theory, as shown in figure 1 (b) for β = 5.7. For µ 6= 0, the effective
PLA has still a sign problem, which we solve via mean-field theory as dis-
cussed in [21, 22]. The treatment of SU(3) spin models at finite µ is just a
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minor variation of the standard mean-field theory at zero chemical poten-
tial. The basic idea that each spin is effectively coupled to the average spin
on the lattice, not just nearest neighbors, is favored by the effective PLA
with the non-local kernel K(~x − ~y ). We introduce two magnetizations for
Tr(U) and Tr(U †) which are determined by minimizing the free energy. A
check of the mean-field approach is that we reproduce the correct expecta-
tion value of the Polyakov loop from LGT at for µ = 0. An example for the
mean-field results of the PLA from LGT at β = 5.7 is shown in figure 2 (a),
showing a phase transition at µ/T ≈ 5. The transition points are plotted in
figure 2 (b), yielding a first phase diagram for dynamical quarks.
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Fig. 2. (a) Polyakov lines from mean-field analysis of the PLA derived from LGT
at β = 5.7 Wilson gauge coupling and dynamical staggered fermions. (b) Prelim-
inary phase diagram for mq = 695 MeV, showing a phase transition line ending
in two endpoints. We cannot rule out that a transition line reappears at lower
temperatures, or that the second endpoint is absent for light quarks.

4. Conclusions

We have found a first-order phase transition line for SU(3) gauge theory
with dynamical unrooted staggered fermions of mass 695 MeV in the plane of
chemical potential µ and temperature T , which agrees very well with results
from analytic continuation of imaginary µ [23].
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