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Fluctuations and correlations of conserved quantities in the confined
phase of QCD are a viable way to characterize the existence of exotic and
missing states with given quantum numbers in the hadronic spectrum. We
study a realization of the Hadron Resonance Gas model in the light quark
(uds) flavor sector of QCD to study the fluctuations and static correlators
of electric charge, baryon number and strangeness. It is also conjectured
an interesting duality between the correlators at zero temperature and the
fluctuations of integrated quantities at low temperatures, leading to the
appearance of a dual Hagedorn distance for the former.
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1. Introduction

A fundamental quantity for the study of the thermodynamics of QCD is
the partition function, which writes

ZQCD = Tr e−HQCD/T =
∑
n

e−En/T , (1)
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where En are the eigenvalues of the QCD Hamiltonian. This illustrates
the connection between the thermodynamics and the spectrum of QCD. An
explicit realization in the confined phase is given by the Hadron Resonance
Gas (HRG) model [1] where the hadronic states compiled by the PDG [2] are
considered as stable, non-interacting and point-like particles. Microscopic
models have also been used to compute the meson and baryon spectra, such
as e.g. the Relativized Quark Model (RQM) [3,4]. In general, these models
predict more states than those reported by the PDG, leading to the idea
of missing states in the QCD spectrum. Moreover, apart from the conven-
tional mesons and baryons, it has been conjectured the possible existence of
exotic states, i.e. those with exotic quantum numbers such as tetraquarks,
pentaquarks or hybrid states, all of them forming color neutral states. Our
recent studies on the Polyakov loop and the corresponding entropy shift due
to a heavy quark suggest that conventional hadrons from the PDG or RQM
are not enough to saturate the sum rules, and in the spectrum there are: (i)
conventional missing states ([Qq̄] and [Qqq]), and (ii) hybrid states ([Qq̄g]
and [Qqqg]) [5–7].

While the HRG approach has been very successful in the description
of the equation of state (EoS) of the confined phase of QCD, leading to a
good agreement with the lattice data for T . 0.8Tc (see e.g. Refs. [5,8] and
references therein), above this regime, the HRG assumptions are invalid and
the approach breaks down. In fact, the partition function becomes divergent
at some finite value of the temperature (the so-called Hagedorn temperature)
after summation over a spectrum with an exponential growth of the density
of states, i.e.

ZHRG = Tr e−HHRG/T −→
T→T−

H

A

TH − T
, TH ≈ 150 MeV . (2)

The EoS is sensitive to the spectrum of QCD as a whole, and it is interest-
ing to study other thermal observables which allow to distinguish between
different channels of the spectrum. In this contribution, we will study the
fluctuations and correlations of conserved charges, and present them as a
tool to check the validity of the HRG approach, as well as to help in the
characterization of exotic and missing states in several sectors of the spec-
trum of QCD.

2. Fluctuations of conserved charges in a thermal medium
Fluctuations of conserved charges ([Qa, H] = 0) are a way of selecting

quantum numbers [9]. In the (uds) flavor sector, the only conserved charges
are the number of u, d and s quarks or equivalently the electric charge Q,
the baryon number B, and the strangeness S. We will study in this section
the HRG realization of the thermal fluctuations of these quantities.
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While in the hot vacuum (with no chemical potentials) the thermal ex-
pectation values of conserved charges are vanishing, i.e. 〈Qa〉T = 0, where
Qa ∈ {Q,B, S}, they present statistical fluctuations characterized by sus-
ceptibilities and defined as [10,11]

χab(T ) ≡ 1

V T 3
〈∆Qa∆Qb〉T , ∆Qa = Qa − 〈Qa〉T . (3)

These quantities can also be computed as χab(T ) ∼ ∂2Ω
∂µa∂µb

∣∣
µa,b=0

from the
grand-canonical partition function, given by

Z = Tr exp

[
−

(
H −

∑
a

µaQa

)/
T

]
, Ω = −T logZ . (4)

Within the HRG model, the charges are carried by various species of
hadrons, Qa =

∑
i q
i
aNi, where qia ∈ {Qi, Bi, Si} is the charge of the ith

hadron corresponding to symmetry a, and Ni is the number of hadrons of
type i. Hence, the susceptibilities are computed as [12,13]

χab(T ) =
1

V T 3

∑
i,j∈hadrons

qiaq
j
b 〈∆Ni∆Nj〉T , a, b ∈ {Q,B, S} . (5)

The averaged number of hadrons is 〈Ni〉T = V
∫

d3k
(2π)3

gi

e
Ek,i/T−ξi

, with Ek,i =

(k2 + M2
i )1/2, gi is the degeneracy and ξ = ±1 for bosons/fermions. Since

the different species are uncorrelated, then 〈∆nα∆nβ〉T = δαβ〈nα〉T (1 +
ξα〈nα〉T ) for the occupation numbers, where α and β stand for any com-
plete set of quantum numbers. Since 〈nα〉T � 1, then 〈∆Qa∆Qb〉T ≈∑

i∈hadrons q
i
aq
i
b〈Ni〉T . The remarkable good agreement of the EoS found

between PDG and RQM [5, 8] compared with lattice QCD, while still rea-
sonable for T . 150 MeV, gets a bit spoiled in terms of fluctuations leading
to the conclusion that fluctuations may serve as a diagnostic tool to study
missing states in the spectrum. For instance, the BB susceptibility suggests
that the RQM has too many baryonic states but not too many charged
states [12,13]. Eventually, at the Hagedorn temperature, TH, the HRG sus-
ceptibilities diverge, χab|HRG ∼ 1/(TH − T ), overcoming the quark model
values expected in the large temperature limit; for uds quarks, one should
get χQQ →

∑
e2q ≡ 2/3, χBB → 1/Nc and χSS → 1.

3. Local correlations in a thermal medium

After the overall success of the HRG for the susceptibilities, it is tempting
to extend the analysis at the local level. We are thus interested in the
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computation of the retarded correlators of conserved quantities

Cabµν(x) =
〈
jaµ(x)jbν(0)

〉
. (6)

The static version of these correlators are related to the susceptibilities
χab(T ) through

χab(T ) =
1

T 3

∫
d3xCab00(0, ~x ) . (7)

In the case of spin 1/2 particles, the vector currents are defined as jµa (x)=

Ψ(x)γµQ̂aΨ(x) with Q̂a a matrix that specifies the charge. In this case, the
static part behaves at small distances as 〈ja0 (~x )jb0(0)〉 ∼ r−6 with r = |~x|.
We can extend this result to finite temperature by using the Poisson’s sum-
mation formula [14]. From a comparison of the zero and finite temperature
correlators, one finds that the thermal corrections in the static correlator at
small distances start at O(r−2) in the case of spin 1/2 particles.

Within the HRG model, we need to evaluate

Cabµν(x) =
∑

M∈Mesons

1

2
gMq

a
Mq

b
MC

JM
µν (x) +

∑
B∈Baryons>0

gBq
a
Bq

b
BC

JB
µν (x) , (8)

where CJµν(x) ≡ 〈jµ(x)jν(0)〉J are the correlators of free particles of spin J .
The summations in M and B run over the spin multiplets of mesons and
baryons, each of them with degeneracy gM = (2JM + 1) and gB = (2JB + 1)
respectively. Baryons and antibaryons contribute to the correlators in the
same amount, so that we have considered in

∑
B a summation over baryons

only, and multiplied it by a factor 2. It is possible to extend the analysis
to particles of any spin by using the Bargmann–Wigner formalism [15] and
to obtain the correlators in Euclidean space (details will be provided else-
where [16]). The small distance behavior of the static correlators, either at
zero or finite temperature, reads (for J > 0 and up to a factor)

Cab J00 (r) ∼
r→0

δab
m2

r4
1

(mr)4J
. (9)

As an example, the lowest lying states contributing to the summations
of Eq. (8) are M ∈ {π+, π−, π0} and B ∈ {p, n}. We display in Fig. 1 the
result of the static correlators at zero and finite temperature in the confined
phase of QCD, within the HRG model. Notice the important growth of the
zero temperature correlator at short distances. Unfortunately, to the best
of our knowledge, there are no lattice studies for these quantities yet.
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Fig. 1. Static correlator C00(0, ~x ) ≡ 〈B(~x )Q(0)〉 at zero temperature (left panel),
and finite temperature (right panel), including pions and nucleons (dashed lines),
and hadrons with J ≤ 7/2 and J ≤ 2 from the RQM spectrum [3,4] (solid lines).

4. Dual Hagedorn distance in the correlators

We may conjecture the existence of a formal analogy between the static
correlators at zero temperature and the finite temperature susceptibilities.
From the asymptotic behaviors of these two quantities,

Cab00(0, ~x )
∣∣∣
T=0

∼
r→∞

e−2mr and χab(T ) ∼
T→0

e−m/T , (10)

where m is the mass of the lowest-lying state, one concludes that they have
a similar behavior after considering the replacement r ↔ 1/T . In particular,
the existence of a limiting temperature for the validity of the hadronic rep-
resentation of χab(T ), i.e. T < TH, cf. Eq. (2), might have its counterpart
in the existence of a limiting distance in the hadronic representation of the
correlators (r > rH). In fact, given the behavior of the static correlators
for particles of spin J , cf. Eq. (9), we expect that after summation over
hadrons of higher and higher spin, the static correlators within the HRG
model present a divergence at some finite value of the distance

CHRG
00 (r) =

∑
J

CJ00(r) −→
r→r+H

∞ . (11)

When using TH ≈ 150 MeV, one gets rH ' 1/(2πTH) ≈ 0.21 fm, where
the factor 1/(2π) is standard in finite T computations. Notice that this
value of rH is of the same order of magnitude as the distance at which
the growth in Fig. 1 (left) become significant, when including hadrons with
J ≤ 7/2. This would be analogous to the divergence of the partition function
at the Hagedorn temperature, after summation over a spectrum with an
exponential growth of the density of states. As in the susceptibilities case
the divergence appears as a purely hadronic feature, but we find this to
happen for smaller distances than 0.6 fm [16], where the hadronic correlation
overcomes the quark correlation which should dominate for r → 0.
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5. Conclusions

At very low temperatures, hadrons can be considered as a complete basis
of states in terms of a HRG model. However, close to the deconfinement
crossover of QCD, many hadrons are needed to saturate the sum rules, so
that this regime turns out to be very interesting for the characterization
of missing states in the spectrum. In this work, we have argued that fluc-
tuations and correlations of conserved charges can be used to study the
existence of missing and exotic states in three different sectors: (i) electric
charge, (ii) baryon number, and (iii) strangeness. Finally, we have conjec-
tured a duality between zero temperature correlators and finite temperature
susceptibilities. This duality leads to the appearance of a dual Hagedorn
distance in the correlators. It would be desirable to confront these results
for the correlators with future results on the lattice.
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