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We analyze the topological susceptibility in SU(3) and SU(2) gauge
theories, using Padé approximation and Refined Gribov–Zwanziger gluon
propagator.
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1. Introduction

From [1], we know that the Faddeev–Popov construction is not valid at
the non-perturbative level. In this regime, there are Gribov copies, multiple
intersections of the gauge orbits with the hypersurface corresponding to a
given gauge condition f(A) = 0. To “fix” this, Gribov proposed the Gribov
region Ω [1], which is free from infinitesimal Gribov copies. Taking into
account the dimension two condensates, 〈AaµAaµ〉 and 〈ϕ̄abµ ϕabµ − ω̄abµ ωabµ 〉, the
Gribov region can be implemented by the action

S = SYM + SGF + SRGZ + Sτ , (1)

where SYM is the Yang–Mills action, SGF is the Faddeev–Popov gauge-fixing
in linear covariant gauges,

SGF =

∫
d4x

(α
2
baba + iba ∂µA

a
µ + c̄ a∂µD

ab
µ (A)cb

)
, (2)
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whereby α is the gauge parameter and −∂µDab
µ = Mab(Ah) = −δab∂2 +

gfabc(Ah)cµ∂µ is the Faddeev–Popov operator, SRGZ is the Refined Gribov–
Zwanziger (RGZ) action [2]

SRGZ =

∫
d4x

(
−ϕ̄acν Mab

(
Ah
)
ϕbcν + ω̄acν Mab

(
Ah
)
ωbcν

+ γ2g fabc
(
Ah
)a
µ

(ϕbcµ + ϕ̄bcµ ) +
m2

2

∫
d4x

(
Ah
)a
µ

(
Ah
)a
µ

+ M2

∫
d4x

(
ϕ̄abµ ϕ

ab
µ − ω̄abµ ωabµ

))
, (3)

and where γ is the Gribov parameter fixed by the gap equation [3]〈
fabcAh,aµ

(
ϕbcµ + ϕ̄bcµ

)〉
= 2d

(
N2 − 1

)
γ2g−2 . (4)

The field configuration Ahµ is a gauge-invariant non-local power series in the
gauge field. It can be obtained by minimizing the functional fA[u] along the
gauge orbit of Aµ [4]

fA[u] ≡ min
{u}

Tr

∫
d4xAuµA

u
µ , Auµ = u†Aµu+

i

g
u†∂µu . (5)

The result of this is a local minimum given by the transverse field configu-
ration

Ahµ =

(
δµν −

∂µ∂ν
∂2

)
φν , ∂µA

h
µ = 0 ,

φν = Aν − ig
[

1

∂2
∂A,Aν

]
+
ig

2

[
1

∂2
∂A, ∂ν

1

∂2
∂A

]
+O

(
A3
)
. (6)

We lay [2, 5]

Ahµ =
(
Ah
)a
µ
T a = h†AaµT

ah+
i

g
h†∂µh , (7)

with h = eig ξ
aTa . We get the local gauge invariance of Ahµ under

h→ u†h , h† → h†u , Aµ → u†Aµu+
i

g
u†∂µu , (8)

with u ∈ SU(N). The term

Sτ =

∫
d4x τa ∂µ

(
Ah
)a
µ

(9)
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implements the transversality of the composite operator (Ah)aµ, ∂µ(Ah)aµ = 0,
where τ is the Lagrange multiplier. Furthermore, the action S is BRST
invariant, sS = 0, see [2] for more details.

For our analysis, the general form of the gluon propagator [5]

Dµν(p) = D(p)Pµν(p) + L(p)
pµpν
p2

(10)

is more interesting. We get that in the RGZ case,

D(p) =
p2 +M2

p4 + (M2 +m2) p2 +M2m2 + λ4
(11)

is the transverse form factor containing all non-trivial information and L(p)=
α/p2 is the longitudinal one, with

Pµν(p) = δµν −
pµpν
p2

, Lµν(p) =
pµpν
p2

(12)

the transversal and longitudinal projectors, respectively. L(p) is exactly
known due to BRST invariance.

2. The topological susceptibility

Due to Witten and Veneziano’s work [6], the topological susceptibility
can be linked to the η′ mass by

m2
η′ =

4Nf

f2π
χ4
θ=0,Nf=0 = O(1/N) , (13)

where θ is the vacuum angle and fπ the pion decay constant. In [6], the
authors analyzed the vacuum topology fluctuations by the Veneziano ghost,

pµpν 〈KµKν〉p=0 6= 0 , (14)

whereby Kµ is the topological Chern–Simons current

Kµ =
g2

16π2
εµνρσAν,a

(
∂ρA

a
σ +

g

3
fabcAbρA

c
σ

)
. (15)

In Euclidean conventions [7], the topological susceptibility χ4 is given by

χ4 = − lim
p2→0

pµpν 〈KµKν〉 ≥ 0 . (16)
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The current correlator 〈KµKν〉 can be calculated via the Källén–Lehmann
spectral density representation,

〈Kµ(p)Kν(−p)〉 =

(
δµν −

pµpν
p2

)
K⊥
(
p2
)

+
pµpν
p2
K‖
(
p2
)

≡
(
δµν −

pµpν
p2

) ∞∫
0

dτ
ρ⊥(τ)

τ + p2

+
pµpν
p2

∞∫
0

dτ
ρ‖(τ)

τ + p2
, (17)

based on Euclidean invariance. Then (16) becomes

−χ4 = lim
p2→0

p2K‖
(
p2
)

= lim
p2→0

p2
∞∫
0

dτ
ρ‖(τ)

τ + p2
. (18)

From dimensional analysis, we just need 2 subtractions (ρ‖(τ) ∼ τ for
τ → ∞) to remove diverges, then the topological susceptibility is only
given by

−χ4 = lim
p2→0

p6
∞∫
0

dτ
ρ‖(τ)

(τ + p2) τ2
. (19)

The spectral density to 1-loop, associated with (17), is given by [8]

ρ‖(τ) = −2A+A−
g4
(
N2 − 1

)
22d+5π7/2Γ

(
d−1
2

) (τ2 − 4b2 − 4aτ
)(d−1)/2

τd/2
(20)

for τ ≥ τc = 2(a+
√
a2 + b2), where a = M2

2 /2 and b =
√
M4

3 −M4
2 /4.

In the MOM scheme D(p2 = µ2) = 1/µ2, the gluon propagator is
given by

D
(
p2
)

= Z
p2 +M2

1

p4 +M2
2 p

2 +M4
3

, Z =
1

µ2
µ4 +M2

2µ
2 +M4

3

µ2 +M2
1

. (21)

For the dynamical mass parameters, rather than attempting to solve their
gap equations (4), we resort to estimates obtained from fitting (21) to lattice
propagator data [9].

In the MOM scheme, the strong coupling is effectively small. Therefore,
we can consider the perturbative treatment, but first, we use the Padé ap-
proximation to estimate the infrared region, where the perturbative result
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is not trustworthy. Before taking the limit in (19), we did an [M + 2,M]
Padé rational function in variable p2. The Padé approximation was around
p2 = µ2. Note that the Padé approximation should not be too small, then
the (perturbatively) computed r.h.s. of (19) is still valid, and not too large, so
the non-perturbative effects from the presence of the RGZ mass scales in (11)
are taken into account, and execute a sensible extrapolation of the approxi-
mant to zero momentum to get an estimate for χ4(µ2). The results for SU(3)
are shown in Fig. 1 forM = 1, 2, 3. They are compared with the lattice ball-
park value of χ ∼ 200 MeV [10]. The error estimation from the uncertainty

on ~x ≡ (M2
1 ,M

2
2 ,M

4
3 ) was computed by σχ(µ2) =

√∑
i (∂χ/∂xi)

2 σ2xi , that
is showed in Fig. 1 (right).

Fig. 1. The SU(3) topological susceptibility χ (left) and its respectively estimated
error due to the uncertainty on the fitting parameters (right) for variable µ2 for
M = 1, 2, 3 (solid, dashed, dotted) [8].

For the N = 2 case, we followed the same procedure as for N = 3,
getting the graphs of Fig. 2.

Fig. 2. The SU(2) topological susceptibility χ for variable µ2 forM = 1, 2, 3 (solid,
dashed, dotted) [8].

In SU(2), the lattice prediction for the topological susceptibility is χ =
200–230 MeV, see [8]. For more details about the calculus and references,
see [8].
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3. Conclusion

We have studied the topological susceptibility, χ4, in SU(2) and SU(3)
Euclidean Yang–Mills theory in a generic linear covariant gauge starting
from the RGZ action. We have checked that the topological susceptibility
is gauge-invariant in the non-perturbative framework as expected. To get
estimates for χ4, we have done a particular Padé rational function approxi-
mation based on the Källén–Lehmann spectral integral representation of the
topological current correlation function 〈KK〉. An improvement of the re-
sult is to include the next order correction. However, this will be a challenge
because of the enlarged set of vertices in the now considered BRST-invariant
RGZ action for the linear covariant gauge.
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