Vol. 11 (2018) Acta Physica Polonica B Proceedings Supplement No 3

ACCESSING THE TOPOLOGICAL SUSCEPTIBILITY
VIA THE GRIBOV HORIZON: AN UPDATE*

C.P. FELIX?, D. DUDAL*P, M.S. GUIMARAES®, S.P. SORELLA®

KU Leuven Campus Kortrijk — Kulak, Department of Physics
Etienne Sabbelaan 53 box 7657, 8500 Kortrijk, Belgium
PGhent University, Department of Physics and Astronomy
Krijgslaan 281-S9, 9000 Gent, Belgium
°Departamento de Fisica Teorica, Instituto de Fisica
UERJ — Universidade do Estado do Rio de Janeiro
Rua Sao Francisco Xavier 524, 20550-013 Maracana, Rio de Janeiro, Brasil

(Received June 22, 2018)

We analyze the topological susceptibility in SU(3) and SU(2) gauge
theories, using Padé approximation and Refined Gribov—Zwanziger gluon
propagator.
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1. Introduction

From [1]|, we know that the Faddeev—Popov construction is not valid at
the non-perturbative level. In this regime, there are Gribov copies, multiple
intersections of the gauge orbits with the hypersurface corresponding to a
given gauge condition f(A) = 0. To “fix” this, Gribov proposed the Gribov
region {2 [1], which is free from infinitesimal Gribov copies. Taking into
account the dimension two condensates, (AfAf) and (@ﬁbgazb — wfjbwﬁb), the
Gribov region can be implemented by the action

S = Sym + Scr + Sraz + Sr, (1)

where Sy is the Yang—Mills action, Sgr is the Faddeev—Popov gauge-fixing
in linear covariant gauges,

Ser = / d4z (% BB + b 9, AL + eaa#ng(A)cb) , 2)
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whereby « is the gauge parameter and —8“beb = M@ (Ah) = 5792 -

g fabC(Ah);au is the Faddeev—Popov operator, Srgyz is the Refined Gribov—
Zwanziger (RGZ) action [2]

Sncy = / I (_@c qad ( Ah) A e pqab ( Ah)
s () e+ 5 fute ()] (4
+M2/d4 (SOZbSOZb wzbwzb>> ’ (3)

and where v is the Gribov parameter fixed by the gap equation 3]

a

<fabcAZ,a (cch I ¢20>> =2d (N? - 1)y*g 2. (4)

The field configuration AZ is a gauge-invariant non-local power series in the
gauge field. It can be obtained by minimizing the functional f4[u] along the
gauge orbit of A, [4]

falu] = min Tr / e ALAL A=A Sl ()

The result of this is a local minimum given by the transverse field configu-
ration

9,0,
Al = (%— )¢,,, OpAl =0

¢,,:Al,—ig[ 6AA] 0A, 0, 6]+O(A3). (6)

o2 2 [82 v o2

We lay [2,5] ‘
h— (4h\* a _ pt garpa Loy
A= (4 )uT WAGT et Ol (7)

with h = €¥95"T" We get the local gauge invariance of AZ under
h—ulh, ht = hiu, Ay — uTAHu + EuTﬁﬂu, (8)
g

with u € SU(N). The term

S, = / diz 720, <Ah)z 9)
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implements the transversality of the composite operator (Ah)z, Gﬂ(Ah)Z =0,
where 7 is the Lagrange multiplier. Furthermore, the action S is BRST
invariant, sS = 0, see [2| for more details.

For our analysis, the general form of the gluon propagator [5]

Dyu(p) = D(p) P (p) + L(p) p;;’j” (10)

is more interesting. We get that in the RGZ case,

p4+(M2+m2)p2+M2m2+)\4

D(p) = (11)

is the transverse form factor containing all non-trivial information and L(p) =
a/p? is the longitudinal one, with

Pup Pub
P/W(p) = 5#1/ - % s L;w(p) = ;QV (12)

the transversal and longitudinal projectors, respectively. L(p) is exactly
known due to BRST invariance.

2. The topological susceptibility

Due to Witten and Veneziano’s work [6], the topological susceptibility
can be linked to the 7’ mass by

4N;
m727’ = ?ngo,Nfzo = O(1/N), (13)
™

where 6 is the vacuum angle and f; the pion decay constant. In [6], the
authors analyzed the vacuum topology fluctuations by the Veneziano ghost,

PuPv <KuKu>p:0 7é 07 (14)
whereby K, is the topological Chern-Simons current
g9’ 9 rabe 4b
K= 10 €unpr Ava (apAg + 25 CA,,Ag) . (15)
In Euclidean conventions [7], the topological susceptibility x* is given by

Y= — lim puby (K K,) > 0. (16)
p2—0
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The current correlator (K, K,) can be calculated via the Kéllén-Lehmann
spectral density representation,

(K (p) K, () = (cm - ppp) 1) + P25 ()

| Puby / & Py (7) (17)
0

based on Euclidean invariance. Then (16) becomes

oo

4 g2 2 S2 Pi(7)

—x~ = lim p*K = lim dr——=. 18
X p2—>0p I (p ) p2—>0p / T+p2 ( )

0

From dimensional analysis, we just need 2 subtractions (pj(7) ~ 7 for

T — 00) to remove diverges, then the topological susceptibility is only

given by

[e.o]

—x* = lim pﬁ/dT(Ti”;Z;TQ. (19)
0

The spectral density to 1-loop, associated with (17), is given by [8]

g*(N2—1) (72— 42 — dar)\ V"
92d+5,7/2 (%) 7d/2

for 7 > 7. = 2(a + Va? + b2), where a = M2 /2 and b = \/M{ — M3 /4.
In the MOM scheme D(p? = p?) = 1/u?, the gluon propagator is
given by

py(T) = =24, A_ (20)

2 M2 1 4 M2 2 M4
D)=z LS g= TSRS (o
pt+ M2p2 + Mj 2 p? + M

For the dynamical mass parameters, rather than attempting to solve their
gap equations (4), we resort to estimates obtained from fitting (21) to lattice
propagator data [9].

In the MOM scheme, the strong coupling is effectively small. Therefore,
we can consider the perturbative treatment, but first, we use the Padé ap-
proximation to estimate the infrared region, where the perturbative result
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is not trustworthy. Before taking the limit in (19), we did an [M + 2, M]
Padé rational function in variable p?>. The Padé approximation was around
p?> = ©?. Note that the Padé approximation should not be too small, then
the (perturbatively) computed r.h.s. of (19) is still valid, and not too large, so
the non-perturbative effects from the presence of the RGZ mass scales in (11)
are taken into account, and execute a sensible extrapolation of the approxi-
mant to zero momentum to get an estimate for x*(12). The results for SU(3)
are shown in Fig. 1 for M = 1,2, 3. They are compared with the lattice ball-
park value of x ~ 200 MeV [10]. The error estimation from the uncertainty

on ¥ = (M2, M3, M{) was computed by o, (u?) = \/Zl (Ox/0zi)? 02, that
is showed in Fig. 1 (right).
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Fig. 1. The SU(3) topological susceptibility x (left) and its respectively estimated

error due to the uncertainty on the fitting parameters (right) for variable u? for
M =1,2,3 (solid, dashed, dotted) [8].

For the N = 2 case, we followed the same procedure as for N = 3,
getting the graphs of Fig. 2.
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Fig.2. The SU(2) topological susceptibility y for variable y? for M = 1,2,3 (solid,
dashed, dotted) [8].

In SU(2), the lattice prediction for the topological susceptibility is x =
200-230 MeV, see [8]. For more details about the calculus and references,
see [8].
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3. Conclusion

We have studied the topological susceptibility, x*, in SU(2) and SU(3)
Euclidean Yang—Mills theory in a generic linear covariant gauge starting
from the RGZ action. We have checked that the topological susceptibility
is gauge-invariant in the non-perturbative framework as expected. To get
estimates for x*, we have done a particular Padé rational function approxi-
mation based on the Kallén-Lehmann spectral integral representation of the
topological current correlation function (K K). An improvement of the re-
sult is to include the next order correction. However, this will be a challenge
because of the enlarged set of vertices in the now considered BRST-invariant
RGZ action for the linear covariant gauge.
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