
Vol. 11 (2018) Acta Physica Polonica B Proceedings Supplement No 3

A FRESH LOOK AT THE (NON-)ABELIAN
LANDAU–KHALATNIKOV–FRADKIN

TRANSFORMATIONS ∗

T. De Meerleera, D. Dudala,b, S.P. Sorellac

P. Dall’Oliod, A. Bashird

aKU Leuven Campus Kortrijk — Kulak, Department of Physics, Leuven, Belgium
bGhent University, Department of Physics and Astronomy, Ghent, Belgium

cUERJ, Instituto de Física Teórica, Rio de Janeiro, Brazil
dUniversidad Michoacana, Instituto de Física y Matemáticas, Morelia, Mexico

(Received June 22, 2018)

The Landau–Khalatnikov–Fradkin transformations (LKFTs) allow to
interpolate n-point functions between different gauges. In this work, we
offer a derivation for both Abelian and non-Abelian LKFT using gauge-
invariant fields. Secondly, this subject is studied using a direct path integral
formalism, finding full consistency.
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1. Introduction

In Quantum Chromodynamics (QCD), we start from basic fields, quarks,
gluons and ghosts (in covariant gauges). However, due to the infrared en-
hancement of the strong coupling constant, perturbation theory does not suf-
fice for describing strong interactions. A solution is given by non-perturbative
QCD, requiring a different treatment of interaction between fields.

In the continuum formulation, gauge fixing is required to warrant compu-
tations, whatever non-perturbative scheme one has in mind. However, QCD
remains a gauge theory, meaning physically observable quantities should not
depend on what gauge is actually chosen to carry out the computation.

Secondly, most computations are limited to this Landau gauge, but other
gauge choices are emerging. LKFT can now be used to study the relation be-
tween quantities studied in Landau gauge, and the same quantity in a newly
chosen gauge. In practice, one often comes across some Ansatz, for instance,
the photon–fermion vertex in QED. These Ansatze are fine-tuned to match
observation, but this way they become gauge-specific but the corresponding
LKFT can show how this vertex looks in a different gauge.
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Motivated by this, our ultimate goal is to study an LKFT for a general
n-point quark–gluon correlator. In this work, we start by introducing gauge
invariant fields, and show how these can be used to find both Abelian and
non-Abelian LKFTs. Secondly, using the viewpoint of the path integral
formalism, the gauge symmetries are fully exploited to find an alternative
derivation of the LKFTs, finding the same results as in the first section.

2. LKFTs using gauge-invariant fields

2.1. A summary of the gauge invariant fields Ah, ψh

We start from the action [1, 2]

S = SFP + Sf + Sh ,

SFP =

∫
d4x

(
1

4
F aµνF

a
µν +

α

2
baba + iba∂µA

a
µ + c̄ a∂µD

ab
µ c

b

)
,

Sf =

∫
d4x

(
ψ̄
(
i /D +mf

)
ψ
)
,

Sh =

∫
d4x

(
τa∂µA

h,a
µ +

m2

2
Ah,aµ Ah,aµ + η̄a∂µD

ab
µ (Ah)ηb

)
, (1)

where Ahµ is defined through

Ahµ = h†Aµh+
i

g
h†∂µh with h = eigφ

aTa , (2)

with T a the adjoint generators of SU(N). As it is apparent, the action
Sh contains a new field φa, besides the Lagrange multiplier τa as well as
the additional ghost fields (η̄a, ηa)1. All these fields belong to the adjoint
representation.

The gauge invariance of Ahµ can be nicely appreciated from the transfor-
mation laws

h→ U †h , h† → h†U , Aµ → AUµ = U †AµU +
i

g
U †∂µU , (3)

with U a generic local SU(N) transformation. Looking at the equations of
motion for the τ field, it is evident that the field Ah is transverse, ∂µAhµ = 0.

1 As underlined in [2], the additional ghosts (η̄a, ηa) are needed to take into account
the Jacobian arising from integration over the Lagrange multiplier τa, which gives
rise to a delta function of the type δ(∂µAh,aµ ).
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This constraint can be solved power-by-power, the result is given by

Ahµ = Aµ −
∂µ
∂2
∂A+ ig

[
Aµ,

1

∂2
∂A

]
+
ig

2

[
1

∂2
∂A, ∂µ

1

∂2
∂A

]
+ig

∂µ
∂2

[
∂ν
∂2
∂A,Aν

]
+ i

g

2

∂µ
∂2

[
∂A

∂2
, ∂A

]
+O

(
A3
)
. (4)

Furthermore, it has been proven that this construction is BRST-invariant
and renormalizable, for a deeper insight on this, we refer to Ref. [1].

2.2. Derivation of the (non-)Abelian LKFTs

In the Abelian limit, expansion (4) simplyfies to Ahµ = Aµ − ∂µφ, which
can be used to obtain the expectation value〈

Ahµ(p)Ahν(−p)
〉
α

= 〈Aµ(p)Aν(−p)〉α − α
pµpν
p4

, (5)

or, specifying to the Landau gauge (α = 0), 〈AhµAhν〉α=0 = 〈AµAν〉α=0.
It is worth now to remind that the transverse field Ahµ is gauge-invariant

or, equivalently, BRST-invariant, see [1, 2]. From this important feature, it
follows that the correlation function 〈Ahµ(p)Ahν(−p)〉α is BRST-invariant as
well. As such, it does not depend on the gauge parameter α [1,2], 〈AhµAhν〉α =

〈AhµAhν〉α=0, and we find

〈Aµ(p)Aν(−p)〉α = 〈Aµ(p)Aν(−p)〉α=0 + α
pµpν
p4

. (6)

Said otherwise, we simply recover the LKFT for the photon. Of course,
this result can also be easily derived using the underlying BRST invariance
of the theory, which ensures that the longitudinal component of the gluon
propagator does not receive any quantum correction, being given by its tree-
level approximation.

2.3. General LKFTs

Similar to the construction of Ah, gauge-invariant fermion fields can be
constructed as well. Consider ψh = h†ψ, with h being still defined via
Eq. (2), the gauge invariance of ψh can easily be verified. The combination
of these invariant fields can be used to study general n-point functions〈

Ahµ . . . ψ
h . . . ψ̄h . . .

〉
α

=
〈
Ahµ . . . ψ

h . . . ψ̄h . . .
〉
α′
. (7)

Specifically, this can be used to obtain the LKFT for the gluon propagator,
using the full expansion Eq. (4).
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3. LKFTs using the path integral and gauge transformations

In what follows, we will refresh the direct path integral derivation of
the Abelian LKFT, which is a kind of rewriting of the original argument
provided in [3, 4] in a more modern language. As an expansion, we will
generalize this derivation to the non-Abelian case, at the cost of adding
several complications of course.

Consider for now the QED action

S =

∫
d[4]x

(
1

4
FµνFµν + ψ̄ /Dψ + ib∂µAµ +

α

2
b2 + c̄∂2c+ J̄ψψ + ψ̄Jψ̄

)
,

(8)
where we included sources for ψ and ψ̄ to define the generating functional
of Green’s functions, Z(J), via the path integral Z(J) =

∫
[dµ] e−S .

Next, we transform the path integral variables A, ψ, and ψ̄ using the
gauge transformation

U = eieφ , Aµ → A′µ = Aµ − ∂µφ , ψ → ψ′ = U †ψ , (9)

and we select
φ = −X 1

∂2
∂µAµ , (10)

where the constant X can still be chosen appropriately, see later. The spe-
cific choice of φ can easily be appreciated looking at the transformation of

∂µAµ → ∂µA
′
µ = (1 +X)∂µAµ (11)

resulting in a rescaling of the Lagrange multiplier b and gauge paramater α
to keep the action invariant

b→ b′ =
1

1 +X
b , (12)

α→ α′ = (1 +X)2α . (13)

The action, up to its source part, is transformed into itself, except that the
gauge parameter α gets replaced by α′. Importantly, also the source terms
vary, which will result in the correlator in the new gauge.

It is consequently found that the φ-propagator has the expected form,
contracting the propagator 〈φφ〉 in the α′ gauge, we obtain 〈φ(p)φ(−p)〉α′ =
−X2α 1

p4
, in accordance with Ref. [4]. For the formal derivation of this

propagator, we refer to Ref. [5].
Starting from any gauge α, if we take the limit X → −1, we arrive at the

Landau gauge α′ = 0, while the φ-propagator remains proportional to 1
p4
.

This rather singular behaviour is fundamental to correctly transform the
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longitudinal projection of the gluon propagator. We remind here that the
latter projection is uniquely fixed by means of the underlying Ward iden-
tities, i.e. the BRST invariance as well as other additional Ward identities
defining the class of linear covariant gauges at the quantum level, see, for
instance, Ref. [1].

We can also investigate the photon propagator. Therefore, we add the
term JµAµ to the action, which will transform to Jµ

(
A′µ − X

1+X
1
∂2
∂µ∂νA

′
ν

)
after the chosen gauge transformation. The photon propagator can be found
using

〈Aµ(x)Aν(y)〉α =
δ2Zα

δJν(y)δJµ(x)
(14)

in the original gauge, or in the new gauge by replacing α→ α′.
From this, we find for the photon propagator

〈Aµ(p)Aν(−p)〉α =
〈
A′µ(p)A′ν(−p)

〉
α′
−
(
α′ − α

) pµpν
p4

. (15)

Clearly, Eq. (15) expresses that only the longitudinal part of the photon
propagator is affected by shifting α→ α′, exactly the same result as Eq. (6).

We now wish to generalize the foregoing path integral derivation of the
LKFTs to a non-Abelian gauge theory supplemented with fermion matter.

We must first establish a general SU(N) transformation with matrix U
for all fields, while maintaining the property that ∂µA′µ = (1 + X)∂µAµ.
This is a necessary requirement, as it will precisely allow for the rescaling of
the Lagrange multiplier b, and thereby for that of the gauge parameter α.

The gauge and matter fields transform as

Aµ → A′µ = U †AµU +
i

g
U †∂µU , (16)

ψ → ψ′ = U †ψ with U = eigφ . (17)

The requirement ∂µA′µ = (1 +X)∂µAµ can be solved order-by-order to the
rotation angle φ, the gauge transformed field A′µ as a function of the original
Aµ is found to be

A′µ = Aµ +X
∂µ∂A

∂2
− igX ∂µ

∂2

[
∂ν∂A

∂2
, Aν

]
− igX ∂µ

∂2

[
∂A

∂2
, ∂A

]
− igX

2

2

∂µ
∂2

[
∂A

∂2
, ∂A

]
+ igX

[
∂A

∂2
, Aµ

]
+
igX2

2

[
∂A

∂2
,
∂µ∂A

∂2

]
+O

(
A3
)
.

(18)
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Note that for the Landau gauge, X = −1, this expression coincides with
the gauge-invariant transversal field Ahµ, see Eq. (2) or Ref. [1]. In general,
A′µ will not be transversal though.

In order that Zα = Zα′ , we used that the action remains invariant.
However, one also has to show that the integration measure does not change
under the chosen gauge transformation. The interested reader is redirected
to Ref. [5].

4. Conclusion and outlook

We have employed the gauge-invariant fields Ahµ and ψh to provide an
alternative way to derive the LKFTs for general n-point correlators. This
derivation was first performed for the Abelian LKFT for the photon and
fermion fields. It reproduced the correct relations as already known from
the literature. The extension to non-Abelian theories was then presented.
To our knowledge, this is the first time in which the non-Abelian LKFTs have
been derived for arbitrary n-point correlators without any approximation.

To lend further credit to the validity of our non-Abelian LKFTs, we also
presented an independent derivation of the LKFTs, from the viewpoint of
the path integral formalism, leading to exactly the same transformations.

As a second proof of concept, we will study the LKFT for the gluon
propagator, which in turn can be compared to lattice QCD predictions to
verify the construction using gauge-invariant fields. Secondly, it would be
interesting to link these two viewpoint with the Nielsen identities, linking
the n-point correlators.
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