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Data Quality Assurance plays an important role in many high-energy
physics experiments, e.g. the ALICE experiment at Large Hadron Collider
(LHC) in CERN. Currently used quality assurance methods rely heavily
on manual labour and human expert judgements. This refers also to the
Time Projection Chamber (TPC), one of the detectors employed by the
ALICE experiment. To ease the burden of human quality label assignment,
we investigated several state-of-the-art machine learning methods that can
automate this process. The evaluated selection of the machine learning
methods include artificial neural networks, support vector machines (with
linear and non-linear kernels), as well as Random Forests and Naive Bayes
Classifier. Our results for the TPC detector indicate, that over 75% of
all data points classified by human experts, can be correctly evaluated
without any human interaction using Random Forest classifier with over
95% precision.
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1. Introduction

Data Quality Assurance is an important task to ensure that the data is
correctly registered. Therefore, it is essential to have proper Quality Assur-
ance system. In some experiments, such as those carried out in LHC, careful
manual data validation is no longer an option. The amount of individual
data samples is already tremendous, and with upcoming improvement to
“run 37, it will simply exceed human capabilities. Therefore, it is crucial to
provide trusted and fast automatic data quality measurement method.
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The current QA process for Time Projection Chamber [1], which is the
main tracking detector in the ALICE experiment [2], relies strongly on hu-
man experts. They assign certain quality label, using different tools which
create descriptive statistics. Our idea is to use some well-known data clas-
sification methods to replace, or at least ease, the work of those experts.
That is why the main goal of this work is to build a model which would
be capable of predicting the quality of examples with the greatest possible
sensitivity. We propose a specific data model, and based on test results, we
select the best fitting classification algorithm.

We split the problem into 3 parts in all of which we build a binary
classifier. Its objective is to predict if sample belongs to the specific class,
or if not sure — leave it for the manual assignment by experts.

We considered several state-of-the-art classification algorithms, com-
monly used for different classification tasks: Support Vector Machine [3],
Random Forest [4], Probabilistic Neural Networks [5], and Naive Bayes Clas-
sifier. We performed numerous tests with each algorithm to compare their
best results. For parameters optimisation, we used automatic grid and gra-
dient search algorithms. Mixing Random Forest Classifier with Adaptive
boosting technique had proven to be the most suitable to this problem, and
allowed to fully automatically assign 75% of all data points with over 95%
precision.

This work is the first attempt to automatically asses the quality of data
sample collection, so-called run, for the TPC detector at the ALICE experi-
ment at the LHC. Results show that with this solution, we can significantly
reduce detector experts labour. We are already working on the improvement
which will work on the exact raw experiment data.

2. Dataset

Run is a set of experiments performed with the same detector param-
eters. We considered its descriptive statistics as a single data sample in
our dataset. Its total size is around 1500 samples with over 250 numeri-
cal attributes, all of them assigned by the detector expert into one of the
descriptive classes. For further investigation, we exclude runs, where the
detector was offline and did not take part in the experiments. They can
be easily distinguished as the ones with no data stored, so in this case, no
sophisticated classification method is needed.

In Table I, we can see the high classes distribution imbalance since most
of the runs occurred as a good quality ones. However, the class “not set”,
refers to the situation where the evaluating expert was uncertain about the
quality and, therefore, it can be considered a useful hint. We used it in our
experiments as not good quality samples.
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TABLE I
Distribution of samples assigned to labels.
Label No. of samples

Detector was ON and running

) . . . 795
according to nominal specifications
Not set 99
Detector off 373
Good data but some not full TPC acceptance 110
Detector was ON but output cannot be 68
trusted as it is known to be not usable

Because of the specific goal of our research, we propose to split the
problem into 3 individual sub-problems of binary classification. In each
case, we want to distinguish some of the samples associated to specific class,
or when the precision is not sufficient, leave it to be manually assigned by
an expert. Table II presents the division to those three approaches.

TABLE II
Class mapping for 3 created problems.
Class Definitely Good Definitely
good bad

Detector was ON and running

according to nominal specifications V- good good to check

Good data but some
not full TPC acceptance

Not set to check | to check | to check

Detector was ON but output cannot be
trusted as it is known to be not usable

to check good to check

to check | to check bad

First one is the retrieval of the 100% correct samples. This means that
we combined runs assigned by experts to all classes other than “Detector was
ON and running according to nominal specifications”. The second approach
was the extension of the first one, with the samples which were almost 100%
correct — those assigned to “Good data but some not full TPC acceptance”
class. The last task was determining 100% bad quality samples.

We propose this class mapping, because of its association to the potential
usage, since each of the approaches addresses one of the main use cases
in terms of data quality assurance. From further processing, we excluded
samples which exceeded 8o variation from mean value on each attribute. In
total, it was around 30 runs (3%). We performed a PCA transformation to
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reduce number of dimensions to 26, with preserving 100% of information in
data. New parameters showed no significant correlation with date, so we
were able to perform the k-fold validation method, without being concerned
of biasing the results.

3. Methods

There are plenty of different, equally good classification algorithms. Se-
lecting the best one is always a challenging task, and requires both great
understanding of data specificity and accurate testing. From the numerous
options we tested, we will describe only the ones which gave the best results.
The ultimate goal of all classification algorithms is defining on the basis of
p-dimensional data distribution in training dataset, the (p — 1)-dimensional
hyperplane, which will separate samples from different classes in the whole
probable data domain. That definition poses a great difficulty in how to
achieve this generalisation. Particular algorithms are used to approach the
task in different way.

3.1. Naive Bayes

Naive Bayes Classifier is probably the simplest solution, which, however,
sometimes can produce surprisingly good results. It is based directly on the
Bayesian theorem of conditional probability. First, the classifier is trained
which means evaluation of probability for each possible decision class in
terms of all attribute values. Then, for a given sample x, with set of at-
tributes A, the predicted class ¢ is chosen as the one which has the highest
probability p(c|A).

What makes Naive Bayes Classifier truly naive is an assumption that
all of the attributes are independent. This is obviously usually false, and
often leads to pure results. Naive Bayes Classifier generates decision class
boundary exactly in the middle between most probable attribute values for
a different decision class. This is not always a good solution, especially for
biased distribution of samples in classes. In our test, we tried to overcome
this problem by applying weights to different decision classes.

3.2. Random Forest

Random Forest algorithm [4] is motivated by the idea that a bigger set
of weak classifiers can produce better results than the single strong one.
For the large number of trees, it follows the Strong Law of Large Numbers
theorem. Together with the tree structure, it can lead to the conclusion
that a big set of combined decision trees will not overfit to the dataset, but
produce a limiting value of the generalization error.
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The model building depends on creating multiple simple decision trees,
each one trained on limited range of attributes. The final prediction for
unseen samples x can be made by taking the majority vote from individual
decision trees. In that way, the samples are divided by complex but linear
decision boundary. Sometimes it is based only on limited number of dimen-
sions, if they provide significant separation. This behaviour is one of the
strong points of the algorithm since it usually leads to better generalisation.

When applying ensemble learning methods, it is known that the more
different and the smaller simple classifier is, the better the outcoming results.
We obtained that difference by assigning only five attributes to each tree. To
keep them small, we used the maximal tree depth, which prevents overfitting.

3.8. Support vector machine

The support vector machine algorithm [3| is a linear classifier which
constructs a decision boundary hyperplane in the best possible way. It is
achieved by placing it so that it ideally separates data samples of different
classes and, simultaneously, has the largest distance to the nearest training-
data point of any class (so-called functional margin). This approach min-
imises possible generalisation error of the classifier.

There are numerous variants of SVM, however, the most important im-
provement is the application of non-linear kernel, which allows creation of
non-linear decision boundary. It is resolved by mapping original finite-
dimensional space into a much higher-dimensional space, where linear sepa-
ration is possible [6].

In our tests, we used different kernels with polynomial and sigmoid func-
tions. We also allowed not ideal separation, hoping to achieve better gen-
eralisation. The same as with Naive Bayes Classifier, we weighted decision
classes to adjust to their distribution dissimilarity.

3.4. Probabilistic neural networks

Probabilistic neural network is a non-linear classifier following the basic
idea from the Rossenblatt perceptron |7]. It is a simple neural network with
only one hidden layer and a softmax function as an output. The training
used is a simple back error propagation algorithm, which tries to minimise
the loss function defined as a difference between returned probability of class,
and the real one.

Probabilistic neural network creates a non-linear decision boundary which
is often very complex. It can lead to the so-called over-fitting which means
that the classifier is too well adjusted to the training set, so it looses its
generalisation ability.
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3.5. AdaBoost — Adaptive boosting

Adaptive boosting [8] technique relies on the simple idea that the clas-
sifier should consider which examples are harder to determine, and try to
optimise the prediction with respect to this knowledge. The implementation
is based on iterative approach with weighted samples. First, the model is
created on the whole training set, with initial sample weights equal to 1.
Then, in every iteration, the model is validated and the weights of the sam-
ples are reassigned so that the ones of the wrongly predicted values are being
increased. In the end of the iteration, the new model is created, with re-
spect to the newly assigned sample weights. It means that every sample is
duplicated in the training dataset the number of times equal to its weight.
The whole algorithm stops after specified number of iterations.

4. Results

Figures 1, 2 and 3 present the results of the performed experiments.
We discovered that combination of Random Forest algorithm and Adaptive
boosting technique is the best choice for this task. In total, we were able to
predict around 75% of all samples, with over 95% precision.

For the first model, where we predicted only the good quality run, we
obtained satisfying results 0,878 AUC for the best Random Forest classifier.
The results are presented in Fig. 1. We aim at reducing the false positive
rate. Precisely, in our dataset, we managed to predict 6,63% good quality
samples with no error, 17,56% with 99% precision or up to 62,55% with 5%
of errors.

When we combined 100% good quality runs with those without full ac-
ceptance, we improved the result of our classifiers up to 0,9 AUC. We built
a classifier which was able to predict 7,16% of samples with full correctness,
or up to 52,50% with 99% precision. As shown in Fig. 2, in this approach,
Random Forest classifier outperformed other algorithms. We discuss this
issue more carefully in Section 4.1.

For the last problem, we had probably too few samples for exact vali-
dation, however, the results we obtained were promising. We were able to
predict even 20% of all definitely bad runs with no error.

4.1. Random Forest evaluation

We estimate a few reasons why Random Forest algorithm showed the
best results among the others. First of all, with respect to the experts
knowledge, not all of over 250 attributes seem to be essential in terms of
measuring the quality of the given sample. It is known that some of the
statistics used for the run description are oversensitive and can lead to false
conclusions. Even when we deleted the known outliers, we can still expect
that some of the given samples are not fully correct on all attributes.
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Fig. 1. ROC curves of different classification algorithms used to predict good quality
runs. It is plainly visible that Random Forest algorithm gives the best results in
this approach.
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Fig.2. ROC curves of different classification algorithms used to predict good and
almost good quality runs. Random Forest clearly outperforms other algorithms.
The results for this approach are also much better than for the others. That
is thanks to combining good and almost good classes, which in reality are very
similar.
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Fig. 3. ROC curves of different classification algorithms used to predict bad quality
runs. Results in this approach show that we can correctly predict most of the
samples, but because of small number of bad runs, those results cannot be fully
trusted.

While using Random Forest algorithm such attributes are automatically
detected and simply excluded from further investigation. All of the solutions
using algorithms based on measuring the distance between samples for ex-
ample SVM, are more affected by that problem. This is due to the nature of
measuring the distance, which is calculated equally on all of the dimensions.

Secondly, the Adaptive boosting method is a very useful technique when
building the prediction model on considerably small dataset. Its impact
is the higher, the more unstable is the basic classification algorithm. In
particular, it should not affect Naive Bayes Classifier and its application for
SVM is of little use.

5. Future works

Knowing the importance of the problem, we are currently working on the
new solution for fully automated quality assurance tool based on anomaly
detection idea with the Generative Adversarial Network [9] model. Using
conditional generative adversarial network [10], we will generate a series
of probable particle showers based on known particles momentum. Then,
when a new sample arrives from a detector, we will compare it to the results
generated by our generator, and highlight possible anomalies. This idea is
already successfully applied for medical purposes in [11].
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6. Conclusion

We present a solution for automated quality assessment of runs for the
TPC detector in the ALICE experiment at the LHC. We carried out detailed
analysis with different data models and classification algorithms. It led to
the solution with 3 binary classifiers based on the Random Forest algorithm
combined with Adaptive boosting technique. Results show that with this
concept, we can reduce detector experts labour by around 75%. We are
currently working on the improvement of this solution which will work on
the exact raw experiment data using the Generative Adversarial Network
technique.

This work has been supported by the research project UMO-2016/21/D/
ST6/01946: “Development of machine learning methods for monitoring the
quality of large volume data and interactive methods for their visualization
on the example of the ALICE experiment on the Large Hadron Collider at
CERN”, funded by the National Science Centre, Poland (NCN).
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