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The functional anatomy between the human right atrium and the sinoa-
trial node (SAN) still remains an open problem under investigation. There
are contradictory hypotheses of how the SAN is electrically connected to
the atria. We use an accurate and efficient approach of the so-called hy-
brid automata to investigate electrophysiological aspects of the atria–SAN
coupling. This approach allows us to simulate the tissue heterogeneity pre-
serving high accuracy of cellular dynamics as a continuous time Markov
process with transitions representing short-lived transient behaviors. Our
simulations suggest that there is an optimal organization of the SAN exit
pathways to the atrium, which here we have identified to be smaller than
1/4 (with maximum at 1/16) of all possible SAN exits to the atrium. At
this fraction, the system provides almost always normal heart rhythm, if
only the density of connections between cells is high enough and the cells
perform the excitation with high probability. Deviations from these condi-
tions could result in tachycardia or in a loss of rhythm.
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1. Introduction

The human heart is a complex system and its study involves multi-
ple physical and chemical aspects. The electrical activity is generated in
the sinoatrial node (SAN) — a complex of specialized cells located in the
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upper part of the right atrium. Then it spreads over the atria stimulating
an atrial contraction which finalizes with excitation of the atrioventricular
node (AVN). The AVN is another complex of specialized cells located in the
bottom part of the right atrium. The AVN is the gate by which the wave
of excitation extends to ventricles for the massive mechanical contraction of
main parts of the heart muscle. Any disturbance in the impulse propagation
through the cardiac muscle is called arrhythmia.

The human right atrium anatomy is still under investigations. The con-
ducting system of atria is specific due to the cell-to-cell connections, and
special cell arrangement [1]. This altogether permits rapid transmission of
impulses. However, there are contradictory hypotheses of how the SAN is
electrically connected to the atria. The first one states that the SAN is
electrically insulated from the surrounding atria by a structural border of
fibrosis, fat layers, and myocyte discontinuity, and the functional and struc-
tural connection between the SAN and atria is limited to discrete SAN exit
pathways [2–4]. The second hypothesis proposes that the SAN and atrial
cells are extensively connected by diffuse digitations of the SAN border with
the atrial myocardium, and no discrete pathways exist [5]. Both hypotheses
are supported by optical mapping experiments.

The problem of the SAN–atrium connection can be seen as a distinc-
tive example of the complex interplay between a network of intercellular
couplings and the organ functionality. To test this hypothesis, computer
simulations have been performed by Kharche et al. [6]. They have found
that the insulating border with limited number of SAN–atrium path exits
promotes SAN–atria tachycardia, i.e., the arrhythmia resulting with the fast
rhythm.

The models which use the discrete approach are sometimes considered
as inadequate due to their simplicity when compared to the biophysically
detailed models [7, 8]. However, this is not accurate since for a given set of
differential equations, there exists a technique — hybrid automata, allowing
to construct an abstract model which preserves all the properties of interest.
Intuitively, the short-lived, transient behaviors are represented as discrete
transitions. Thanks to this approximation, the computational efficiency of
the hybrid automata is high and, therefore, one is able to test variate predic-
tions about heart electrophysiological behavior with relatively low computa-
tional cost. The physiological motivation of the hybrid automata approach
is discussed in [9]. This paper is devoted to further promoting and dissem-
inating this approach. Subsequently, we present the numerical motivation
together with the details of our implementation aimed at testing the impact
of the limits in pathways between the sinoatrial node and the right atrium
on the rhythm of heart contractions. The implementation of the program:
executable files and the C++ code are provided via the GitHub license [10].
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The main result of our simulations is that there exists the optimal or-
ganization of the SAN exits. In particular, we have found that the fraction
of all possible exits should be smaller than 1/4. In these conditions, the
resulting rhythm is almost always normal if the dynamics is only slightly
perturbed by cellular refuse to excitations and when the density of intercel-
lular connections is sufficiently high. Deviations from these conditions could
result in the transition to tachycardia — a very fast heart rhythm, or in the
loss of rhythm. Similar results have been discussed in [11], however they
have been obtained for the SAN of different (smaller) shape.

2. On modeling the cardiac tissue

2.1. Biological background

For non-pacemaking excitable cells of atria or ventricles, action poten-
tials (APs) are externally triggered events [12]: a cell fires the AP as an
all-or-nothing response to a supra-threshold stimulus, see Fig. 1. Each AP
follows the same sequence of phases and maintains approximately the same
magnitude regardless of the applied stimulus. After an initial step-like in-
crease in the membrane potential, the AP lasts for hundreds of milliseconds.
Evidently, the AP of a typical ventricular cardiac cell is distinct from a typ-
ical atrial cardiomyocyte. In particular, the human atrial action potential
typically exhibits a triangular shape, while the ventricle cells show a spike-
and-dome shape with a prominent plateau phase. Moreover, this shape
changes from cell to cell. The atrial action potential duration at 90% repo-
larization (APD90) shows variations of between 150 and 500 msec [13]. The

Fig. 1. (Color online) The AP for a typical myocyte of the atrium (gray/green) and
ventricle (black). The uncertainty in the shape of the atrial cell AP, expressed by
a variety of action potential duration APD90, is displayed. (Drawn after [13].)
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atrial resting membrane potential (Vrest) has been found to vary between
−65 and −80 mV, and is more depolarized than in the human ventricle.
Maximum upstroke velocities (Vmax) for atrial action potentials have been
experimentally reported to vary between ≈ 150 and 300 V/s in contrast to
higher values of 300 to 400 V/s for human ventricular cells.

2.2. Continuous modeling and its limitations

Mathematical and computational models of cardiac physiology have ac-
companied the cardiac electrophysiology for many years. The Luo–Rudy
model [14, 15] is the cardiac cell model which reconstructs the real AP from
physiological transduction processes going on in the cellular membrane. The
base comes from the Hodgkin–Huxley description of the ion-channel dynam-
ics. However, the model is enriched by a much larger number of ion currents
and by considering other elements of cellular electrophysiology such as ac-
tive ions pumps, intercellular compartments for calcium transport, and cal-
cium buffers. From http://www.physiome.org/jsim/models/webmodel/
NSR/Luo-Rudy/ or paper of Miller et al. [16] one can learn about a variety
of models derived from the original Luo–Rudy idea.

While these models more and more accurately reconstruct a given cell
electrophysiology, they hardly manage the problem of the large variability in
cellular activity [17] and the problem of the anatomical and electrophysiolog-
ical heterogeneous structure of the atria, especially the right atrium [18, 19]
on which the atrial function strongly depends [20]. At least, the specificity
of the two clusters built of self-exciting myocytes: the SAN and the AVN
has to be taken into account. Then, the conduction bundles on the right
atrium: crista terminalis (CT) which go along the SAN and lead to the
AVN, should be considered because myocytes of CT are aligned longitudi-
nally what evidences their preferential conduction. Finally, the large part
of the right atrium is formed in a comb-like fashion by the pectinate muscle
(PM). In contrast, it is not possible to infer the myocyte orientation in PM.
Altogether this complex anatomy makes difficult or even impossible setting
the so-called typical properties and/or typical conditions.

2.3. Grid models

In the series of papers of the team of Manchester University [7, 21], the
mixed approach has been used. The propagation of the AP is considered
on the numerical grid made of automata. Eighteen distinct automata have
been applied to capture the diversity of the right atrium tissue.

In [22], Podziemski and Żebrowski considered an even simpler model of
the atria architecture. Namely, a two-dimensional square plane has been
used to represent the atrial geometry. Such modeling allowed them to ar-

http://www.physiome.org/jsim/models/webmodel/NSR/Luo-Rudy/
http://www.physiome.org/jsim/models/webmodel/NSR/Luo-Rudy/
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range directly important anatomical details necessary to study the devel-
opment of arrhythmias. In particular, the matrix consisting of 100 × 100
simulation cells — representing 8 cm× 8 cm, what can be compared to the
human right atrium size, was divided into dedicated regions: the SAN, AVN
and regions of normal atrial conductive tissue in between. The two sets of
equations were used: FitzHugh–Nagumo [23, 24] and Fenton–Karma [25] to
simulate the ion-channels activity of cardiac cells and intercellular interac-
tions. These two dynamics are the phenomenological simplification derived
from the cellular models. They are concentrated on capturing the AP shape
and, therefore, involve significantly fewer equations and fewer parameters
than, e.g., Luo–Rudy approach.

The cellular grid approach has been also used by Kharche et al. [6] to
simulate the effect of limitations in SAN–atrium exits pathways. In par-
ticular, a plane of 128 × 128 cells evolving according to the Fenton–Karma
differential equation has been considered. The SAN cells were represented
as the island on the see of atrial cells, isolated from the atria or with few
(four) exits.

2.4. Cellular automata approach

In the classical cellular automata model of excitation considered by
Greenberg and Hastings in 1978 [26], each automaton, placed on some reg-
ular lattice, has three states: active A, firing F and refractory R, see Fig. 2.
An automaton in the active state becomes firing if a number of neighbors in
the firing state exceeds a certain threshold. Then, an automaton moves from
firing to the refractory state, and after completing the refractory state, it
returns to its original state of being active. It is known that a homogeneous
network of such automata is characterized by the threshold mechanism which
produces a large amplitude response to a sufficiently strong stimulus [26].

Fig. 2. An excited automaton in the active state becomes firing. Then it moves
to the refractory state and spends there APD steps, after which it returns to its
original state of being active.

Recently, a square lattice cellular automata model has been proposed
by Christensen et al. [27, 28] which reproduces the known characteristics
of the atrial fibrillation. In particular, the model considers vertically con-
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nected automata, while horizontal connections are left rare and random.
All automata are identical except the automata from the borderline, where
the self-excited automata are placed to mimic the SAN. Moreover, some
of the automata, chosen at random, have been assumed as dysfunctional
— these automata with some probability could refuse the excitation. Sim-
ulations have provided that dysfunctional cells together with the decrease
of the density of horizontal connections might block the propagation of the
wavefront, what then could induce the backward wavefront which, at certain
topological circumstances, starts up the reentrant circuit.

2.5. Hybrid automaton (HA)

It occurs that one can benefit from the development of abstraction tech-
niques which, for a given system of non-linear differential equations, allows
to construct a model which preserves all the properties of interest. This
promising technique is hybrid automata [29]. The continuous in time evo-
lution is broken into few phases: states, with a rather smooth dynamics.
The short-lived, transient behaviors are replaces with discrete transitions
between states.

Formally, for a finite set of environment events Σ affecting an automaton
or sent by an automaton, a hybrid automaton is defined as a tuple [30]:

A = {G,X, init(), inv(), f low(), jump(), event()}

consisting of:

(i) G = (V,E): a directed graph with a set of vertices V , called states,
and a set of edges E, called transitions;

(ii) X = {x1, . . . , xn}: a set of real-valued variables;
Ẋ = {ẋ1, . . . , ẋn}: a set of the first order derivatives of X with respect
to the time with time being a continuous global variable;
X ′ = {x′1, . . . , x′n, ẋ′1, . . . , ẋ′n}: a set with values of X and Ẋ attained
after the transitions, i.e., initial values for the evolution in the next
state;

(iii) functions labeling graph vertices:
init : V → P (X),
inv : V → P (X),
flow : V → P (X ∪ Ẋ),

and functions labeling graph edges:
event : E → Σ,
jump : E → (Guard,Action) = (P (X ∪Σ), P (X ′)),

where P () denotes any predicate logic about the variable.
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Intuitively, an automaton spends the time in its state v from V , where
it updates its variables x, ẋ according to the flow predicate flow(v). The
jumps jump(e) i.e. transitions e = (v, w) are instantaneous, where v is the
beginning state and w is the end state of the transition. A jump along e
is taken whenever the jump’s guard jump(e).guard is enabled for the cur-
rent values of variables X, or the invariant of the current state inv(v) is
unsatisfied.

The HA has a natural graphical representation as a state transition di-
agram, with control modes as the states and control switches as the tran-
sitions. Flows and invariants (usually predicates are written within curly
braces) appear within the states (as state labels), while jump conditions
(described in square brackets) and actions appear around the edges (as tran-
sition labels).

2.6. Luo–Rudy model by HA

The so-called empirical method can be used to reconstruct the Luo–
Rudy model with as few continuous variables as possible, but still accurately
representing cell-excitation features [30, 31]. This method follows the curve-
fitting technique, where the curve being fitted can be restored by a set
of linear ordinary differential equations of the form of v̇ = Cv with v =
(v1, v2, v3). The variables v = (v1, v2, v3) are not directly related to the
variables of the differential equations of the Luo–Rudy model, but they
represent the degrees of freedom.

In the case of an atrial myocyte with the AP of the triangular shape, the
HA can be proposed as follows, see Fig. 3:

Σ: the set of environment events consists of one real variable {VS}, which
describes the strength VS of the external stimulation;

G: the graph is built of three vertices, V = {s0, s1, s2}, which are called
active, firing and refractory, respectively, and of four transitions be-
tween states, E = {s0 → s1, s1 → s2, s2 → s0, s0 → s0};

X: the set of four real variables {v1, v2, v3, v}, their derivatives {v̇1, v̇2, v̇3, v̇},
and reset values {v′1, v′2, v′3, v′}.

labels: init(), inv(), flow(), event(), jump() to vertices and edges are
given in Fig. 3.

A system of linear differential equations is defined on v1, v2, and v3
variables in each state. The membrane voltage v = v1 − v2 + v3 is used to
control transitions. The value of VS describes a stimulation event from the
environment. The state invariants are given below the differential equations
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describing the membrane voltage. The transitions described by the jump
conditions depend on the three model-specific constants: threshold voltage
for the excitation VT, overshoot voltage VO in response to the excitation,
and repolarization voltage VR which sets the resting membrane potential.

Fig. 3. The graph of HA which provides the AP resulting from the Luo–Rudy
dynamics.

In Fig. 4, we plot the time dependence of v variable obtained from the
HA evolution described in Fig. 3. Stimulations VS were injected at random
in time and value. The values of coefficients were chosen to best reveal the

Fig. 4. The AP obtained by solving the systems of ordinary differential equations
defined by flow() functions in HA approach. The excitations were at random.
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known properties the AP of an atrium myocyte, i.e., a01 = a02 = a03 = 0.001,
a11 = 200, a12 = 0, a13 = 100, a21 = −0.01, a22 = 0.013, a23 = 0.008, VS = 20,
VR = −80, VO = 20. The above model at the given values of parameters
very accurately reproduces the membrane potential of a myocyte. Moreover,
the square lattice of such automata provides results very efficiently, see [31],
namely ten times faster than with the full Luo–Rudy equations.

3. Timed automata model of atrial tissue

3.1. Myocyte AP by timed automata

It is easy to see that in the case of the HA revealing the Luo–Rudy model,
the real variables v1, v2 and v3 behave regularly in each state, i.e., they
depend on time in a linear way approximately. For this reason, one can say
that state properties depend only on the time spent in this state. Therefore,
instead of solving computationally demanding differential equations, one
needs to regard the passage of time. This simplification leads to the notion
of timed automata (TA) [32, 33].

Formally, for a finite set of environment events Σ, a timed automaton is
defined as a tuple [30]:

A = {G,X = C, init(), inv(), jump(), event()}

where

(i) G = (V,E) is a directed graph with a set of vertices V , called states,
and a set of edges E, called transitions;

(ii) X = C = {x1, . . . xn} is a set of real-valued variables, called clocks,
which in each time step advance the values by 1 or reset them to 0;

(iii) the function init() is a subset of Σ, and remaining functions over
states and transitions: inv : V → ClockConstriants, event : V,E →
Σ, jump.Guard : E → ClockConstriants and jump.Action : E →
Clock.Reset are labeling the graph vertices and edges by predicates
driven by clocks.

Accordingly, the timed automaton, which represents the myocyte dy-
namics, is defined on the three state space with four edges, similarly to the
HA presented in Fig. 3. However, instead of the three real variables v1, v2, v3
and the set of differential equations driving their evolution, the timed au-
tomaton needs one clock variable t, see Fig. 5. The external stimulation
is quantified by NS. The jump conditions are defined by the three clock
constraints: (1) a threshold NF for the response to the external stimulation,
(2) time steps spent in state s1 i.e. firing f , (3) time steps spent in state
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s2 i.e. refractory r. The fourth constant a is introduced to limit time steps
spent in the active state s0. Notice that with a constant, we have a possi-
bility to mimic the self-excitation of a cell what is important in the case the
automaton simulates the SAN myocyte.

Fig. 5. A timed automaton which restores the AP properties resulting from the
Luo–Rudy dynamics for an atrial cell.

Moreover, to include to the model the cell-to-cell variability, we consider
r = jump.Guard(s2 → s0) the length of APD as a random variable. We
assume that r = r0+ξ, where r0 is fixed but ξ is a random variable with the
uniform distribution U [0, R]. So, in the initial step, each automaton obtains
its ADP value r0 ≤ r ≤ r0 + R with which it performs the evolution. This
value is assigned to a cell independently of other cells.

The ability of self-excitation of the SAN-cells is simulated by setting the
parameter a = jump.Guard(s0 → s1) finite. Consequently, the SAN cell
intrinsic dynamics is periodic with the period TSAN = f + r+ a. In the case
of atrial cells, the value of jump.Guard(s0 → s1) = ∞ in all simulations.
These cells settle at the s0 state after the excitation driven by the external
event.

The initial state of each automaton is set at random. In Fig. 6, we present
the procedure with which the automata of the system are initialized.

Finally, the stochastic evolution is introduced in order to simulate the
impairment of a cell. Namely, at any time step, a cell can refuse the ex-
citation with probability prefuse, see the label for the transition s0 → s1 in
Fig. 7. Consequently, the transition s0 → s1 is performed if two conditions



Hybrid Automata Approach in Modeling the Role of Pathways Between . . . 121

are satisfied: a randomly chosen number ξ ∈ U(0, 1) is greater or equal to
prefuse and the external excitation NS is stronger than the threshold value
NF . Otherwise, a cell stays in state s0.

Fig. 6. The StateInit() procedure and variables involved which set initial states to
cells.

Fig. 7. A stochastic timed automaton where the extra condition for cellular exci-
tation is introduced — the excitation is performed with probability prefuse.

3.2. Right atrium architecture by stochastic square lattice network

Two types of TA cells: the SAN cells and the atrial cells, are organized
in a square lattice of L× L size in a way shown in Fig. 8.

Each cell interacts with the same nearest neighbors selected in the initial
step. These neighbors are chosen at random from the Moore neighborhood
with probabilities pV, pH and pL for vertical, horizontal and lateral connec-
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Fig. 8. A general architecture of the right atrium model and the main procedure
applied in the construction of inter-cellular links in the SAN, and between the SAN
and atrium. The atrial cells are regularly arranged in vertices of 2D square lattice.
They are stochastically interconnected within the Moore neighborhood. The SAN
cells are also randomly interconnected. Additionally, the local rewiring algorithm,
see Fig. 9, is applied to each cell to mimic a free architecture of connections between
the SAN cells.

Fig. 9. Construction of intercellular links: algorithm for stochastic lattice connec-
tions and algorithm of local rewiring, for details, see [34].
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tions, respectively. However, respecting the known physiology of the atrium
(the crista terminalis arrangement), we assume that all atrial cells are con-
nected vertically, i.e., pV = 1. The densities of horizontal pH and lateral pL
connections are the model parameters.

Additionally, since the main concern of our modeling is the SAN–atrium
connection, then for each cell from the SAN boundary with probability
pSAN_exits a directed connection to the nearest atrial cell is established.

In the case of the SAN cells, there is not any direction in favor. In order
to imitate more casual architecture of the SAN, the algorithm of RandomLo-
calRewiring() is performed [34]. It results in locally modified neighborhoods.
In particular, a given link can be rewired to the next neighbor, see Fig. 9
for details.

3.3. Model summary

Let us consider a network of timed automata Ai,k where i = 1, . . . , N
means its vertex in the network and k ≥ 0 counts the time steps in the
system. Each Ai,k is a continuous time Markov process on the state space
V = {s0, s1, s2}, where the graph in Fig. 7 is the transition graph of the
embedded chain. In particular, the continuous intrinsic evolution of each
automaton is defined by the flow() predicates, which here mean advancing
the clock variable t at the constant rate in all automata.

Let Ai,k = (v, t), where v ∈ V , t ∈ C. Let Ev = {e ∈ E : e = (v, we)} be a
set of edges coming out of the state v. The jump along the e ∈ Ev to the state
we is performed if either inv(v, t) == False or jump.guard(e, t) == True.
Notice that the guards of edges are chosen in a way that ensures deterministic
performance of the automaton cycle — there is only one outgoing edge. The
stimulation threshold NF for the transition s0 → s1 means the count of
nearest neighboring cells in state s1. We call the automaton stochastic when
with some probability prefuse > 0, the transition s0 → s1 is not performed.

Our model is stochastic because of (1) stochastic setting of rξ values
(our automata have different APD) and (2) stochastic arrangement of inter
automata connections. The stochasticity in connections leads to the local
inhomogeneity by procedure of rewiring. Additionally, the architecture of
the system is globally heterogeneous due to the presence of the SAN and
AVN with the fixed shape, consisting of automata with distinct from the
atrium automata arrangement of connections and distinct (cyclic) intrinsic
evolution. Also the limits in one-way paths for the impulse exits from the
SAN effects in global system heterogeneity. All this randomness results from
the initial conditions and the choice of model parameters, i.e., rξ, pV, pH,
pL, size and location of the SAN, prewire, and pSAN_exits. Moreover, the
evolution of each automaton is stochastic because of the random execution
with prefuse of the transition s0 → s1 from the Active to Firing state.
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What is the most important for our model application, we assume that
each AP which reaches the AVN propagates further to the rest of the heart:
ventricles, causing their contraction. Therefore, the time steps between sub-
sequent AVN excitations are considered as the intervals between the heart
beats. These intervals, called further RR-intervals, provide the series the
variability of which can be assessed with tools used in quantifying the real
signals of heart beats obtained from ECG recordings [35].

4. Simulation results and discussion

Our implementation offers the window-frame, see Fig. 10, in which one
can observe the development of the impulse in the SAN, its exit from the
SAN and then the impulse propagation over the atrium. The impulse shape
is formed by automata in the Firing state which is marked in black. The
gray/green color distinguishes automata in the Active state. The white
color is used to automata in the Refractory state. The impulse arrival to
the AVN is marked by a switch of the color (white to red) of the oval lo-
cated near the AVN cells. Moreover, one can easy manipulate the values

Fig. 10. (Color online) The two windows of our implementation: the interface
window and the consola window. The left part of the interface window shows
the actual state of the automata with the noticeable rectangle of the SAN cells
automata. Gray/green, black and white colors correspond to the Active, Firing and
Refractory states of the automata, respectively. Each automaton is represented by
3×5 pixels. The AVN is marked by the oval in the bottom-right. The right part
of the interface window provides buttons for model parameter manipulations. The
consola window displays the basic model parameters and resulting RR-intervals.



Hybrid Automata Approach in Modeling the Role of Pathways Between . . . 125

of the crucial model parameters, and observe their impact on the propaga-
tion of the impulse. Together the text results of a simulation, identified as
RR-intervals, are displayed in the console window.

4.1. Simulation specification

Our simulations were carried out in accordance with the following spec-
ification:

— The lattice of size 120× 120 was used. The SAN was set to consist of
10× 30 cells located at (10, 10), while the AVN was consisted of eight
cells located at (100, 120) in a way shown in Fig. 8.

— The system was simulated at different fraction pSAN_exits of the SAN
to atrium connections. In particular, we started with all connections
allowed, and then subsequently considered the exit pathways restricted
to 1/2, 1/4, 1/8, 1/16 and 1/32 of all possible. The exit pathways were
chosen at random. Notice that at the given size of the SAN, 77 cells
could be potentially connected to the atrium.

— The impact of the fraction in possible pathways was observed for differ-
ent values of cellular refuse to the excitation prefuse and with different
densities of atrial non-vertical connections pH and pL. However, in all
simulations, the relation pH = pL was assumed.

— The intrinsic dynamics of the atrial TA was characterized by the clock
constrains: f = 1, r0 = 30, a = 1000. As ξ was set to 10, the ADP
values rξ were uniformly distributed in the interval [30, 40].

— The SAN cells rule was driven by: fSAN = 13, rSAN
0 = 27, aSAN = 60

and ξ = 0. The organization of the SAN intrinsic architecture was
the same in all simulations: pSAN

V = pSAN
H = pSAN

L = 0.65. Such
architecture provided on average 5.2 neighbors for each cell. Moreover,
the intercellular connections were modified by RandomLocalRewiring()
with prewire = 1, see Fig. 9. The applied rewiring procedure resulted
in strong inhomogeneity of the SAN structure. There were always a
few cells connected to more than ten other cells, the maximal number
of connections was 15± 3.

All conditions and values were selected as the best fits to the known phys-
iological observations. Starting with the SAN period T = fSAN+rSAN+aSAN

which matched the size of the lattice L, we adjust the fact that under normal
conditions, only one wavefront propagates over the right atrium. Then the
values of f, r, a were allocated in accordance with the known properties of
the myocyte AP.
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Thanks to the assumed AVN architecture, i.e., two cells over three cells
and over three cells, see Fig. 8, we could specify some extra condition on the
impulse which arriving at the AVN is successful in exciting the node. In the
following, we considered that the AVN became excited if two of the eight
cells of the AVN were simultaneously excited. Notice that, because of the
arrangement of the AVN cells, the same impulse could enter the node from
the top and from the left side with a few time steps of difference. Obviously,
such excitations are not physiologically feasible. To avoid counting fake AVN
excitations, we ignored any AVN stimulation which occurred in time shorter
than minimal APD, namely shorter than r0 = 30.

4.2. Stationary dynamics and its classification

The variety of observed stationary dynamics was enormous and, in con-
sequence, any automatic classification of these states could potentially be
ambiguous. The idea behind the classification below is to stick to the known
features of the real heartbeats as close as possible.

The simulations were performed for the large number of different den-
sities of not vertical connections, pnV = phorizontal = plateral ∈ (0.05, 0.95),
for different levels of cellular impairment prefuse ∈ [0.0, 0.5], and at different
fraction pSAN_exit of SAN to atrium connections. Each parameter setting
(pL = pH, prefuse, pSAN_exits) was simulated a hundred times. Each exper-
iment started from a random initial state of all automata. The first 2000
time steps were left for the system stabilization and then, during the next
2000 steps, the state analysis was performed.

The assumed values for the SAN cell intrinsic activity result that after
each TSAN = 100 time steps, the next wave front should leave the SAN.
Hence, the perfect score for the AVN excitations should be 20. Accepting
the stochastic modifications to the RR-intervals because of rξ and local
network architecture, and in agreement with the known variability of the
RR-intervals in humans [35], we consider any RR-interval with length 80 <
RR-interval < 120 as normal and refer to it as NN .

On the other hand, the finite size of the SAN together with limits in
the SAN exit pathways establish circumstances for appearance of the fronts
circulating around the SAN. Consequently, there may be observed two wave
fronts propagating from the SAN to AVN in place of one wave front. Such
a state will be called SAN-arrhythmia in connection with the observed
SAN tachycardia in humans.

For the classification purposes of any stationary state, in each experiment
we count: (a) normal RR-intervals: count_NN, (b) RR-intervals shorter
than normal: count_shorter, (c) RR-intervals longer than normal: count_-
longer, and (d) all observed RR-intervals: count_RR. Consequently, RR-
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intervals shorter than 80 are assumed as arrhythmic events (tachycardia),
RR-intervals longer than 120 are indicates for the arrhythmia with missed
beats.

In a series of plots below, we present the screen-shots of typical wave
fronts observed in simulations. In each row, we display the same state but at
distinct moments of time. The names for the stationary states are based on
the characteristics of observed RR-intervals, however they are also consistent
with the real heart beat arrhythmia.

— A perfect normal state should satisfy the condition count_NN =
count_RR. However, we accept a deviation from this relation by clas-
sifying as normal all states for which count_NN > 16.

Normal pnV = 0.5, prefuse = 0.2, pSAN_exits = 1/4. A case of high density
of non-vertical connections: one wave front propagates to AVN.

Normal pnV = 0.1, prefuse = 0, pSAN_exits = 1/4. A case of rare non-vertical
connections: few thin fronts slowly propagate to AVN.
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— A perfect state of the SAN-arrhythmia should provide count_RR = 40.
Again, accepting some distortion from that relation, we classify a state
as the SAN-arrhythmia if all RR-intervals are short, i.e., count_shorter
= count_RR.

SAN arrhythmia pnV = 0.5, prefuse = 0.2, pSAN_exits = 1/4. All
RR-intervals are short, two fast fronts propagate to AVN.

— In the case ofcount_RR = count_shorter + count_NN and 0 <
count_NN ≤ 16, we refer to a state as some other arrhythmia. It
can be compared to the supra-ventricular arrhythmia in humans.

Other arrhythmia pnV = 0.5, prefuse = 0.2, pSAN_exits = 1. RR-intervals
of short and normal length are mixed.
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— A state with count_shorter > 0, count_longer > 0 and count_RR
> 10 is referred to as arrhythmia with lost beats. At this state, there is
often observed, distinct from the SAN, a self-sustained source (multiple
sources) of the wave front.

Lost arrhythmia pnV = 0.5, prefuse = 0.4, pSAN_exits = 1. A case when
some other excitation source, different from the SAN, emerges.

— A state with count_shorter > 0, count_longer > 0 and count_RR ≤
10 is referred to as the lost arrhythmia. Such a state can be compared
to the fibrillation phenomenon in the real heart.

Dead arrhythmia pnV = 0.5, prefuse = 0.5, pSAN_exits = 1. Many random
waves wander but they are inefficient to excite AVN.

— If 6 ≤ count_NN ≤ 16 and count_shorter = 0, the normal rhythm
with missed beats is assumed.

— If count_NN < 6 and count_shorter = 0, then a state is referred to
as the dead normal state.
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4.3. Results and discussion

In Fig. 11, we show the probability to observe a final state in the given
class. The probabilities are presented for different densities of the network
connections pL = pH, different levels of cellular impairment prefuse and for
subsequent ratios of pSAN_exit.

colors of classified states:
↓ pnV prefuse = 0.0 prefuse = 0.05 prefuse = 0.10

0.1

0.2

0.5

0.8
Fig. 11. Table with the distributions of classified states for different density of non-
vertical connections, different probability prefuse to refuse stimulation and different
ratio of connections between the SAN and atrium pSAN_exit. In rows of the table
the characteristics of systems with the same density pnV (the leftmost numbers
give this density) are displayed. In columns, the distributions for systems with the
same stochasticity prefuse are plotted.
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One can see that all three simulation parameters pL = pH, prefuse, and
pSAN_exits influence the state stabilization. In the case of deterministic evo-
lution, when prefuse = 0, the following three limit states dominate: normal,
SAN_arrhythmia and dead normal. Their participation seems to be only
slightly dependent on the density of non-vertical connections. However, it is
noticeable that these distributions strongly depend on pSAN_exit. It occurs
that the fraction of 1/8 and 1/16 of SAN exits provides the most stable
system, i.e., the probability for the stabilization as a normal state is the
greatest.

The described statistics is strongly modified in the case of the stochastic
evolution, namely when prefuse > 0. When network connections are rare,
pL = pH < 0.2, the probability for the development of a normal state almost
vanishes to 0. Instead, the arrhythmic states: other arrhythmia or lost
arrhythmia are found. When the density of network connections seems to
be large enough, pL = pH ≈ 0.5, then also the loss in the probability of
obtaining stabilization as a normal state is observed. At these densities, the
states of other arrhythmia are frequent. The presence of these states only
slightly depends on pSAN_exits but increases when prefuse increases. Finally,
in the case of high density of intercellular connections pL = pH ≥ 0.8, also
for stochastic evolution with prefuse ≤ 0.2, the system exhibits its ability to
stabilize with the normal state at highest probability for pSAN_exit < 1/8.
This property can be read directly from the plots of Fig. 12.

In Fig. 12, we show the probability of the stabilization to the normal
rhythm for different parameter settings. From these plots one can see that
this probability depends on both the density of non-vertical connections,
and probability to refuse an individual cell prefuse. It is noticeable that the
level of this probability is strongly related to the fraction of paths from the
SAN to atrium pSAN_exit. In all settings of (pH = pL, prefuse), the case
when all SAN cells were connected to the atrium, pSAN_exit = 1, led to the
negligible number of normal states. For values of pSAN_exit ≤ 1/4, it is not
clear from the simulations which value is the optimal one. However, for some
specific sets of parameters, it is apparent that the maximum is attained at
pSAN_exit = 1/16, see Fig. 12.

Perhaps, because of the insufficient number of repetitions of simulation
experiments and/or the insufficient length of the individual simulation run,
the courses of the curves in Fig. 12 are not smooth enough to indicate crit-
ical values of the system. Nevertheless, it seems that the isolation of the
SAN from atrium provides significantly better conditions for stabilization
to the normal rhythm than the complete connection. Additionally, we see
that the increasing stochasticity in performance of the cellular rule what
mimics cellular impairment, decreases the SAN ability in maintaining the
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normal rhythm. Similar results were obtained for the TA system driven by
the SAN of different size: smaller (5 × 15 cells) than the SAN considered
here, see [11].

Fig. 12. Probability to observe the stationary state as a normal rhythm for different
densities of non-vertical connections. Subsequent panels show this probability for
different levels of cellular impairment prefuse.

5. Summary

Although discrete models are often seen as model oversimplification, nev-
ertheless, thanks to their simplicity of design and their comprehensibility,
these models allow for a significant advance in our understanding, and pro-
vide insights into how to process non-linear, spatially distributed, multiscale
dynamical systems. Hybrid automata being a generalization of transition
systems are a well-established formalism for modeling and verifying real-
time systems acting on both continuous and discrete time scales.
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In the case of the AP of a myocyte, the HA approach leads to numerically
indistinguishable results from solutions obtained by the continuous methods.
However, efficiency of such simulations is ten times better than in the case
of the continuous models [30]. Additionally, the HA approach allows to
manipulate heterogeneity of both the cellular dynamics and the architecture
of intercellular interactions.

Our simulations have provided an important relationship between atrial
anatomy and the rhythm of heart excitations. We observed that at a certain
probability of possible SAN–atrium pathways (randomly chosen), the occur-
rence of the normal rhythm attained the highest probability. This property
is valid in large intervals for the density of transversal intercellular connec-
tions, and for the levels of cellular impairment observed relation. Details of
this relation need further extended simulations. After discovering this rela-
tion, a backward message can be obtained. Namely, based on the rhythm of
heart beats we can conclude about the state of the patient’s cardiac tissue.

D.M. gratefully thanks the referee for the constructive comments and
recommendations which substantially help improving the readability and
quality of the paper.
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