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Lattice-gas cellular automaton (LGCA) models are introduced as mod-
els for the analysis of pattern formation in interacting cell populations.
LGCA models are cell-based, computationally efficient, and allow to in-
tegrate statistical and biophysical models for different levels of biological
knowledge. Moreover, LGCA models permit multiscale analysis of collec-
tive phenomena emerging at multiple temporal and spatial scales.
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In the context of multicellular tissue dynamics, various cell-based mech-
anistic models have been developed to analyse tissue dynamics viewed as
collective phenomenon emerging from the interplay of individual biological
cells. Since cell-based models represent the biological cell as an individual,
variability between cell phenotypes can be captured. This variability can
be fundamental for the organization at the tissue level. For example, it
has been realized that understanding tumour progression and resistance to
treatment requires account for cell-to-cell variabilities [1].

Cell-based models can be classified into lattice and off-lattice or “lattice-
free” models depending on if or not the model operates on a fixed lattice (see
[2] for references). Lattice models are equivalent to cellular automata. Cellu-
lar automata were introduced by J. von Neumann and S. Ulam in the 1950s
as models of individual (self-)reproduction [3]. They consist of a regular
spatial lattice in which each lattice node can assume a finite, typically small
number of discrete states. The next state of a node depends on the states
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in the neighbouring sites and a deterministic or stochastic transition func-
tion. Cellular automata provide simple models of self-organising systems in
which collective behaviour emerges within an ensemble of many interacting
“simple” components — being it molecules, cells or organisms [4-6].

A lattice-gas cellular automaton (LGCA) is a cellular automaton in
which each lattice site additionally contains velocity channels. LGCA mod-
els were introduced to simulate aspects of fluid dynamics [7], but have
also been used successfully to investigate single and collective cell migra-
tion, biological pattern formation, and the growth and invasion of tumours
[8-21]. LGCA models are cell-based, computationally efficient, and allow to
integrate statistical and biophysical models for different levels of biological
knowledge [22-25] (Fig. 1). As a cellular automaton, an LGCA is defined
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Fig. 1. Applications of LGCA models: avascular cancer growth (left, [8]), invading
wave front (middle, [26]), angiogenetic network formation (right, [25]).

on a regular lattice, where the nodes of the lattice take a certain number
of discrete states. As a lattice-gas, the state space is related to the lattice
geometry. Each node can be occupied by “biological agents”, in particular
biological cells, characterised by their velocities which are restricted to the
unit vectors connecting a node to its nearest neighbours (Fig. 2). Agents
move along the links and interact on the nodes of the lattice. This interaction
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Fig.2. States in a LGCA: node state is represented by occupation of velocity
channels; in the example on the square lattice there are four velocity channels and
one rest channel. Filled circles denote the presence of a cell with the respective
velocity.
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can change the number of agents at individual nodes (birth/death processes)
and may depend on the states in neighbouring nodes which allows to model
collective effects (Fig. 3).
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Fig.3. LGCA: interaction and propagation. Filled circles denote occupied chan-
nels and open circles empty channels. Left: part of the lattice before interaction.
Black/green squares (von Neumann neighbourhood) denote the nodes that influ-
ence the outcome of interaction at the central node. Middle: after interaction:
the configuration of the central node has changed due to interaction. Right: after
propagation: all cells have moved along the links to their nearest neighbours (the
lattice outside the part shown was assumed to be empty, i.e. no propagation of
cells from “outside”).

LGCA models allow multiscale analysis of behaviours emerging at mul-
tiple temporal and spatial scales. In particular, one can distinguish micro-
scopic and macroscopic spatial scales, where the microscopic scale is much
smaller than the typical cell size and is not explicitly considered in LGCA
models. The macroscopic scale is much larger than the cell size and refers
to the behaviour of the cell population. An LGCA operates at a mesoscopic
scale between the microscopic and the macroscopic scale: the mesoscopic
scale coarse-grains microscopic properties but distinguishes individual cells.
LGCA as “mesoscopic” models can be regarded either as coarse-grained mi-
croscopic models, or discretised macroscopic models. The LGCA frame-
work facilitates theoretical analysis of emergent, tissue-scale (macroscopic)
behaviours. In many cases, the macroscopic behaviour of the mesoscopic
LGCA can be analysed very well with a spatial mean-field description based
on a partial differential equation |7, 9, 27, 28|.

For simulations see: https://imc.zih.tu-dresden.de//biolgca/
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