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The cellular automaton (CA) pulsing model described the surprising
phenomenon of spontaneous, sustained and robust rhythmic oscillations,
pulsing dynamics, when random wiring is applied to a 2d “glider rule” run-
ning in a 3-value totalistic CA. Case studies, pulsing measures, possible
mechanisms, and implications for oscillatory networks in biology were pre-
sented. In this paper, we summarise the results, extend the entropy-density
and density-return map plots to include a linked history, look at totalistic
glider rules with neighbourhoods of 3, 4 and 5, as well as 6 and 7 studied
previously, introduce methods to automatically recognise the wave-length,
and extend results for randomly asynchronous updating. We show how the
model is implemented in DDLab to validate results, output data, and allow
experiments and research by others.
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1. Introduction

The cellular automaton pulsing model (the CAP model) [1] is a 2d cel-
lular automaton (CA) subject to a 3-value k-totalistic “glider rule”, where
the local wiring is randomised. Pulsing dynamics, sustained rhythmic oscil-
lations of density and entropy measures, emerge spontaneously and almost
inevitably. The characteristic wave-forms are robust and depend on the
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specific glider rule applied. If the extent or reach of random wiring is re-
duced, pulsing will eventually break down, suggesting a threshold and phase
transition.

The CAP model is a significant phenomena in its own right, posing
questions in CA theory on the mechanisms of glider dynamics, the mecha-
nisms of pulsing, and how the two are related. It is also significant in the
context of bio-oscillations ubiquitous at many time/size scales in biology.
Currently, there is no satisfactory theory to explain essential oscillations in
various animal organs, for example heart beat, uterine contractions in child-
birth, and various rhythmic behaviours such as breathing controlled by the
central nervous system. The CAP model provides a possible oscillatory bio-
mechanism based on long-range signalling between cells/neurons in excitable
tissue, following the classical three state dynamic: Firing, Refractory, and
Ready-to-fire, and subject to glider rule equivalent logic.

These concepts, ideas and results were defined and documented in [1]. In
this paper, we present a summary, extend the entropy-density and density-
return plots to include a linked history, and look at glider rules with smaller
neighbourhoods k, of 3, 4 and 5, as well as 6 and 7 studied previously. We in-
troduce methods to automatically recognise and measure wave-length/wave-
height and output the data. We extend results for randomly asynchronous
updating. We show how the model is implemented in DDLab to allow vali-
dation of results and further experiments and research by others, and include
pre-assembled collections of glider rules.

2. Glider dynamics in 2d CA

The lattice geometry of a 2d CA depends on its neighbourhood template,
and we present templates relevant to this paper in Fig. 1. Collections of
glider rules have been assembled based on these templates.
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Fig. 1. 2d neighbourhood templates (k = 3 to 7) as defined (and numbered) in
DDLab, setting the lattice geometry, both hexagonal and square. The target cell
is central even if not part of the template.
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Each cell in the lattice updates its value synchronously1 according to a
homogeneous 3-value k-totalistic rule. This determines the dynamics which
can be seen as successive pattern images in the same way as a series of still
images make a movie. Most rules result in disorder, but we are interested
in complex rules characterised by identifiable mobile features, in particular
gliders or mobile particles consisting of compact cell-value assemblies mov-
ing through the lattice with a given velocity, comprising a head and tail,
and interacting by collisions with other gliders or stable particles as in the
examples in Fig. 2.

CAP-model-10 printed on December 3, 2018 3

(a) v3k3x1.vco, g1
(hex)00a864

(b) v3k4t1.vco, g1
(hex)2a945900

(c) v3k4x1.vco
(hex)2282a1a4

(d) v3k5x1.vco, g1
(hex)004a8a2a8254

xx

(e) v3k6n6.vco, g16
(hex)01059059560040

xx

(f) v3k7w1.vco, g1
(hex)020609a2982a68aa64 

The Spiral rule [2]
Fig. 2. Examples of glider dynamics for 2D neighborhood templates (k=3 to 7) in

Fig. 1. Cell values: 0=white, 1=red, 2=black. Green trails of 5 time-steps indicate

glider velocity. Examples b, c, e, and f include glider-guns. The rules can be loaded in

DDLab by their filenames, in hexadecimal, or from the rule collections index g(x).

moving through the lattice with a given velocity, comprising a head and
tail, and interacting by collisions with other gliders or stable particles as in
the examples in Fig. 2.

In DDLab, collections of glider rules are provided, extracted from auto-
matic samples of complex rules — not all complex rules support gliders and
pulsing. The older collections for k= 6 and 7 relating to [1] include complex
rules as well as pulsing rules, whereas for the k= 3, 4, and 5 collections,
only pulsing rules have been included. For k=3, pulsing results from mo-
bile intersecting linear structures, rather than classic gliders which are less
frequent.

While assembling these collections we can confirm that gliders almost
inevitably imply pulsing, and their absence imply non-pulsing. We should
however note that we have observed a few very rare exceptions.

Fig. 2. Examples of glider dynamics for 2d neighbourhood templates (k = 3 to 7)
in Fig. 1. Cell values: 0 = white, 1 = grey/red, 2 = black. Light grey/green trails
of 5 time-steps indicate glider velocity. Examples (b), (c), (e), and (f) include
glider-guns. The rules can be loaded in DDLab by their filenames, in hexadecimal,
or from the rule collections index g(x).

1 Although synchronous updating is a necessary condition for gliders to emerge, pulsing
in the CAP model persists for asynchronous and noisy updating [1].
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In DDLab, collections of glider rules are provided, extracted from auto-
matic samples of complex rules — not all complex rules support gliders and
pulsing. The older collections for k = 6 and 7 relating to [1] include complex
rules as well as pulsing rules, whereas for the k = 3, 4, and 5 collections,
only pulsing rules have been included. For k = 3, pulsing results from mo-
bile intersecting linear structures, rather than classic gliders which are less
frequent.

While assembling these collections, we can confirm that gliders almost
inevitably imply pulsing, and their absence imply non-pulsing. We should,
however, note that we have observed a few very rare exceptions.

3. Random wiring

Unrestricted, unbiased, random wiring follows the same connection ap-
proach as Kauffmans’s “Random Boolean Networks” [2]. For each target
cell, we take k cells at random anywhere in the lattice and “wire” them to
distinct cells in the pseudo-neighbourhood template — “pseudo” because the
actual template values are replaced by the values of the random cells, as in
Fig. 3 (a). Each target cell is assigned its own random wiring. We have also
studied random wiring with three types of bias resulting in degrees of de-
graded pulsing and waveform signatures [1]. A summary of the consequences
relating to Fig. 3 (a), (b), (c), (d) are listed below,

(a) Unbiased random wiring gives the strongest and most robust pulsing
in the CAP model.

(b) If random wiring is confined within a local zone, as the size of the
zone is reduced, at some stage, global pulsing will break down into
mobile patches of density which may take the form of spiral waves.
The threshold properties of this phase transition requires further in-
vestigation. The waveform signatures are recognisable as they degrade.

(c) If one wire is “freed” from a small local zone, robust pulsing with a
characteristic waveform is partially restored, and this is reinforced as
a higher proportion of wires are freed.

(d) Starting with a conventional CA, freeing one or more wires randomly
from each neighbourhood template results in the onset of pulsing by
degrees, also conforming to a characteristic waveform.

In these experiments, the precise random wiring, the random initial state,
and even re-randomising the wiring at each time-step as in Derrida’s an-
nealed model [3], makes no significant difference to the waveform.
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Fig. 3. Examples of random wiring in a 40× 40 2d lattice. A bigger lattice would
normally be required for robust pulsing, to avoid reaching a uniform value attrac-
tor [4].

A single key press in DDLab enables switching between CA and any
type of preset random wiring, or between stable random wiring and re-
randomising the wiring at each time-step while maintaining the preset bias.

4. Why 3-value k-totalistic rules?

We restrict our investigation to the subset of 3-value k-totalistic rules
for the following reasons:

— The discovery of pulsing in the CAP model, and that no pulsing is
evident in an equivalent 2-value system.

— Compared to a general CA, the k-totalistic rule-table is relatively short
[5, Sec. 13.6.1] and thus tractable for displaying aspects of the pulsing
waveform.
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— The dynamics are isotropic so closer to nature — the same output
for neighbourhood template rotation or reflection, though k-totalistic
rules are restricted beyond isotropy giving smaller rule-spaces than
just isotropic rules.

— The rules can be reinterpreted as reaction-diffusion systems with in-
hibitor/activator reagents in a chemical medium [6–8], where the three
CA values are seen as: Activator, Inhibitor, and Substrate.

— The availability of short-lists of glider rules, extracted from large sam-
ples of complex rules that are found (and sorted automatically) by the
variability of input-entropy [5, 9, 10].

— The CAP model can be applied to bio-oscillations in excitable tissue
according to classical 3-state neuronal dynamics: Firing, Refractory,
and Ready-to-fire.

5. Definition of 3-value k-totalistic rules

The properties and definition of 3-value k-totalistic rules are summarised
as follows:

— The target cell at time step t depends on the combination of k totals,
or frequencies, of the values in the neighbourhood template at t− 1.

— Each combination of totals make up the rule-table (named “kcode”),
for example, the 3-value (v = 3) k = 5 rule v3k5x1.vco in Fig. 2 (d),

20...................0 <--kcode index
| |

> 2: 544333222211111000000 < frequency strings 5 0
v=3 values > 1: 010210321043210543210 < of 2s, 1s, 0s, from 0 to 0

> 0: 001012012301234012345 < shown vertically 0 5
|||||||||||||||||||||
010222022022220021110 <--rule table (kcode), outputs [0,1,2]

In DDLab, kcode can be expressed in hexadecimal for compactness, in
this case 004a8a2a8254, also shown in Fig. 2 (d).

— kcode size S = (v + k − 1)!/(k!× (v − 1)!), which increases arithmeti-
cally; kcode-space= vS . A general rule-table (rcode) has vk entries
increasing exponentially; rcode-space= vv

k . For v = 3 and k = 3 to 7,
the size of the kcode and rcode strings are as follows:

k 3 4 5 6 7

vcode 10 15 21 28 36
rcode 27 64 125 216 343
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6. Signs of pulsing

When pulsing occurs, it is clearly evident by eye when the system is run
in DDLab (Fig. 4). Space-time pattern density will exhibit a steady rhyth-
mic periodic beat, and this will be reflected by the input-histogram. The
input-histogram tracks how frequently the different entries in a rule-table are
actually looked up at each time-step, or the changing 2d block-frequency,
where the “blocks” are the alternative patterns within the neighbourhood
template.

6 CAP-model-10 printed on December 3, 2018
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Fig. 4. Dynamic graphics in DDLab show up pulsing in the v3k7 Spiral rule[2] from

Fig. 2(f), with a period of 7 time-steps. Each 100×100 pattern in a typical cycle is

shown above its input-histogram where horizontal bars represent the lookup-frequency

of 36 neighborhoods, (all-2s at the top) for each corresponding time-step.

Fig. 4. Dynamic graphics in DDLab show up pulsing in the v3k7 Spiral rule [6] from
Fig. 2 (f), with a period of 7 time-steps. Each 100× 100 pattern in a typical cycle
is shown above its input-histogram where horizontal bars represent the lookup-
frequency of 36 neighbourhoods, (all-2s at the top) for each corresponding time-
step.

Further time-plot measures can be derived and presented graphically as
the system iterates. The entropy of the input-histogram can be calculated2

and plotted with its characteristic wave-length (wl), wave-height (wh, twice
amplitude), and waveform (its shape or phase), which in turn can generate
an entropy-density scatter plot [9] (Fig. 5). From space-time patterns, the
density or proportion of each value, (0, 1, 2) if v = 3, can be plotted, and
this can generate a density return-map scatter plot [5] (Fig. 6). The scatter
plots have the characteristics of chaotic strange attractors, and successive
dots can be connected to create a linked history — this option is much faster
to produce the characteristic plot because just a few time-steps are needed.
The wl and wh data can be recognised and output automatically.

2 The input-entropy is the Shannon entropy H of the input-histogram. For one time-
step, Ht = −

∑S−1
i=0

(
Qt

i/n× log2
(
Qt

i/n
))
, whereQt

i is the lookup-frequency of neigh-
bourhood i at time t. S is the rule-table size, and n is the network size. The nor-
malised Shannon entropy HN is a value between 0 and 1, HN = Ht/ log2 n, which
measures the heterogeneity of the histogram — “entropy” in this paper refers to HN.
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(a) (b) (c)

Fig. 5. For the v3k7 Spiral rule from Fig. 2 (f), (a) Input-entropy oscillations with
time (y-axis, stretched), wl ≈ 7 time-steps, wh ≈ 0.4. Left edge: superimposed
histogram values plots. (b) The entropy-density scatter plot — input-entropy
(y-axis) against the non-zero density (x-axis), for about 33 000 time-steps. (c) The
same plot for just a few pulsing cycles, but linking successive dots giving a time-
history.

(a) (b) (c)

Fig. 6. For the v3k7 Spiral rule from Fig. 2 (f), (a) Value-density oscillations with
time (y-axis, stretched). 0 = light grey/green, 1 = grey/brown, 2 = black. (b) The
density return-map scatter plot — the density of each value at t0 (x-axis) against
its density at t1, plotted as coloured dots as above for about 33 000 time-steps.
(c) The same plot for just a few pulsing cycles, but linking successive dots giving
a time-history.

We will use the term “waveform” to sum up these pulsing measures. Each
glider rule in the CAP model maintains its distinctive waveform signature,
reflecting the distinctive glider dynamics. It was shown in [1] that the un-
derlying waveform signature is independent of the network size n, becoming
more focused as n increases towards infinity, but reducing n makes reaching
a uniform attractor [4] more likely, where the system would freeze.
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Waveform measures and plots are usually averaged over a moving window
of w time-steps, w = 10 to classify rules by the variability of input-entropy
[9], but to observe pulsing dynamics most effectively, we take the measures
over each time-step, where w = 1. However, when measuring the wave-
length wl automatically, w ≥ 2 can sometimes be preferable. Figures 5 and 6
show examples of the measures for the k = 7 Spiral rule [6] on a 100× 100
lattice, with w = 1.

7. Wave-length and wave-height data

A new method is available in DDLab to automatically recognise and
measure the wave-length (wl) and wave-height (wh) of entropy oscillations
in the CAP model. The output appears in the terminal. The data can be
activated while the density-entropy plot is active. The algorithm is effective
for well-developed steady (but possibly variable) entropy oscillations — the
examples in Fig. 7 relate to the rules in Figs. 9, 10, and 12. Entropy oscilla-
tions with jagged stretches or transient min/max values in the plot profile, as
in Figs. 8 and 12 (a), can disturb the wave-length (wl) measures, but this can
be smoothed out by making the time-step window w ≥ 2 without effecting
wl, though wh would be reduced. Figure 8 gives an example of variable wl,
and with jagged stretches resolved by making w = 20. Section 10.2 includes
step-by-step instructions for the method.

v3k3 kcodeSize=10
(hex)00a864 w=1
min=112 wl=10 wh==0.268
max=115 wl=9
min=121 wl=9 wh==0.260
max=125 wl=10
min=131 wl=10 wh==0.269
max=135 wl=10
min=140 wl=9 wh==0.211
max=144 wl=9

(a) w = 1, Fig. 9

v3k4 kcodeSize=15
(hex)2a945900 w=1
min=107 wl=6 wh==0.294
max=110 wl=7
min=114 wl=7 wh==0.332
max=117 wl=7
min=121 wl=7 wh==0.270
max=123 wl=6
min=127 wl=6 wh==0.355
max=129 wl=6

(b) w = 1, Fig. 10

v3k5 kcodeSize=20
(hex)004a8a2a8254 w=2
min=116 wl=11 wh==0.428
max=118 wl=11
min=126 wl=10 wh==0.420
max=129 wl=11
min=138 wl=12 wh==0.457
max=141 wl=12
min=148 wl=10 wh==0.442
max=151 wl=10

(c) w = 2, Fig. 12

Fig. 7. Wave-length (wl) and wave-height (wh) examples showing data for a typical
sequence of 4 pulsing cycles. Data is output continuously in the terminal, and
average values so far if interrupted. The rules, shown at the top, relate to waveform
figures indicated. The algorithm identifies the time-step at the minimum and
maximum values of each oscillation to calculate wl and wh. The size of the time-
step window w is shown; usually w = 1, but, for example (c) w = 2 to smooth out
a jagged stretch at the maximum part of the plot profile in Fig. 12 (a).
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(a) w = 1 (b) w = 20

v3k7 kcodeSize=35
(hex)806a22a29a12182a84 w=20
min=691 wl=101 wh==0.206
max=711 wl=101
min=781 wl=90 wh==0.202
max=800 wl=89
min=893 wl=112 wh==0.210
max=913 wl=113
min=969 wl=76 wh==0.199
max=989 wl=76
min=1059 wl=90 wh==0.211
max=1078 wl=89
min=1133 wl=74 wh==0.211
max=1152 wl=74
min=1195 wl=62 wh==0.193
max=1214 wl=62
min=1258 wl=63 wh==0.203
max=1278 wl=64
min=1349 wl=91 wh==0.195
max=1369 wl=91
min=1427 wl=78 wh==0.199
max=1446 wl=77
min=1482 wl=55 wh==0.198
av-wl=79.14, av-wh=0.201, sample=50

(c) w = 20

Fig. 8. Wave-length (wl) for rule v3k7 g35 in [1], with steady but variable wl oscil-
lations, and jagged stretches on the downslope of the entropy plot profile (a) can
give false min/max results, but this is fixed by increasing the time-step window
(w = 20) to smooth the plot (b). (c) shows typical data, with wl between 62 and
113 time-steps, though the actual range is slightly greater. The last line shows
average values.

8. CAP model plots for k = 3, 4, 5, and 6

The CAP model input-entropy and value-density plots, as in Figs. 5
and 6, for the v3k7 Spiral rule from Fig. 2 (f), on a 100 × 100 lattice, are
shown here for the rules in Section 2, for k = 3, k = 4 (triangular and
orthogonal), k = 5, and k = 6. For each rule, four plots (a), (b), (c),
(d) described below, are shown in Figs. 9–13. The rules can be loaded in
DDLab in various ways including by their filenames or in hexadecimal, but
to explore the range of pulsing behaviours most effectively, from the rule
collections index g(x).

(a) Input-entropy oscillations with time (y-axis, stretched). Left edge:
superimposed histogram values plots.

(b) The entropy-density scatter plot — input-entropy (y-axis) against the
non-zero density (x-axis), for just a few pulsing cycles, and linking
successive dots giving a time-history.
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(c) Value-density oscillations with time (y-axis, stretched). 0 = light
grey/green, 1 = grey/brown, 2 = black.

(d) The density return-map scatter plot — the density of each value at t
(x-axis) against its density at t+1, plotted as coloured dots for just a
few pulsing cycles, and linking successive dots giving a time-history.

(a) (b) (c) (d)

Fig. 9. k3 CAP plots, v3k3x1.vco, (hex)00a864, g(1).

(a) (b) (c) (d)

Fig. 10. k4 (triangular) CAP plots, v3k4t1.vco, (hex)2a945900, g(1).

(a) (b) (c) (d)

Fig. 11. k4 (orthogonal) CAP plots, v3k4x1.vco, (hex)2282a1a4.
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(a) (b) (c) (d)

Fig. 12. k5 CAP plots, v3k5x1.vco, (hex)004a8a2a8254, g(1).

(a) (b) (c) (d)

Fig. 13. k6 CAP plot, v3k6n6.vco, (hex)01059059560040, g(16).

9. Randomly asynchronous updating

Pulsing in the CAP model subject to asynchronous and noisy updating
turns out to be robust [1], but perhaps the most intriguing and unexpected
result is that pulsing continues with a recognisable waveform when random
single cells are updated one at a time. Experiments for k = 6 and k = 7
glider rules3 (Fig. 14) confirm these results, where data is plotted for each
cell update so experiments take 10 000 times longer (for 100 × 100) than
synchronous updating. To seed up computation, the data can be sampled
at longer intervals by partial order or sequential updating, or a combination
of both.

Although the CAP model is a computer simulation, the fact that the
pulsing waveform is preserved for randomly sequential singe cell updating is
significant in the sense that the CPU timer can be ruled out as an external
time-keeper.

3 For other rules and k values, the results are still under investigation.
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(a) v3k7 g3 wl ≈ 21, wh ≈ 0.6 (b) v3k7 g35 wl, wh, see Fig. 8
Fig. 14. Entropy-density plots for sequential updating one cell at a time at random
positions [1] result in pulsing. The network is 100×100, so n = 10 000 such updates
are required to approximate one synchronous time-step. (a) v3k7 g3 (see Fig. 16),
and (b) v3k7 g35 (see Fig. 8).

10. Experiments with DDLab

Using the DDLab software [11], the results presented in [1] and in this
paper can be reproduced, and many other rules and aspects of pulsing dy-
namics investigated. Pre-assembled collections of glider rules are available,
and can be activated on-the-fly (key g), while space-time patterns are ac-
tive, the wiring can be toggled between CA and random (key 7), and the
dynamics observed, measured and recorded with other keys and interactive
functions. The older collections for k = 6 and 7 relating to [1] include com-
plex rules as well as pulsing rules. For the k = 3, 4, and 5 collections,
only pulsing rules have been included — figure 15 shows an overlay of all 20
entropy-density plots for each of these rule collections.

We summarise below the steps in DDLab to run the experiments, re-
ferring to chapters and sections (denoted by #x.x) from the book “Explor-
ing Discrete Dynamics — Second Edition” [5], — its pdf is kept updated
online [11]. Having installed DDLab4, from a terminal in the directory
ddlab/ddfiles, enter ../ddlabz07 -w & to start in a white screen.

4 Download the latest compiled version of DDLab (November 2018 or later) for Linux
or Mac from www.ddlab.org to a directory called ddlab, and the extra files in
dd_extra.tar.gz to a subdirectory called ddlab/ddfiles (directory names are ar-
bitrary). #3 gives further guidance. For Microsoft Windows, use a Linux or Mac
emulator. The DDLab code, written in C, can also be recompiled following instruc-
tions in readme files and Makefiles provided.

ddlab/ddfiles
www.ddlab.org
ddlab
dd_extra.tar.gz
ddlab/ddfiles
readme
Makefiles
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k = 3 k = 4 k = 5

Fig. 15. For k = 3, 4, and 5, 20 overlaid entropy-density plots for just a few pulsing
cycles each, and linking successive dots giving a time-history.

Read #4.1 (Quick Start Examples) for details about user input and
control. Briefly, flashing cursor prompts are presented in turn; respond with
input followed by Return to step forward, q to backtrack or interrupt.
Return without input selects a default.

10.1. Basic steps to set up a CAP model

For CAP pulsing experiments, we will set up a 100 × 100 2d network
where v = 3, and k = 7 (for example) and totalistic rules (#4.9.3).

(1) At the first prompt, enter t for TFO-mode (Totalistic Forward Only,
#6.2.1).

(2) At the next Value range prompt enter 3 (#7.1).

(3) Enter return until a top-right WIRING prompt window appears
(#11.1). Enter 2x for hexagonal 2d (2s for square/orthogonal).

(4) At the next top-right prompt to set the 2d size (#11.6.1) enter 100
for both i and j.

(5) At the next top-right prompt, Neighbourhood size k: (#11.7) en-
ter 7.

(6) At the next top-right 2d network . . . wiring prompt (#17.1), en-
ter 2 to display a 2d wiring graphic bottom left, showing CA neigh-
bourhoods, together with a top-right reminder (#17.4).

(7) Now set random wiring: enter b for a 2d block (#17.7.5), then a to
outline the “block” as the whole network (#17.4 reappears), then r
for random, which shows links for the highlighted cell as in Fig. 3 (a).
Click other locations to show the wiring for other cells.
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(8) Enter return until the top-right prompt revise from: (#31.1), en-
ter e, then at the entropy/density: prompt (#31.5), enter e again.

(9) At the next top-right prompt, enter d to skip further special options
and start the 2d space-time patterns iterating in the top-left of the
screen for a random rule, with the input-entropy plot (averaged for a
moving window of 10 time-steps) and the input-histogram alongside.
The rule was set at random so oscillations are unlikely. To revise any
of the above, backtrack with q.

10.2. Space-time patterns on-the-fly options

While 2d space-time patterns are running, on-the-fly key-press options
may be activated/toggled (#32.3) — a reminder appears on the right of the
screen. To pause (or backtrack) at any time key-press q, which gives a top-
right prompt window with further options (#32.16). For the CAP model
experiments, the following options are the most relevant.

(1) For a random rule from a glider collections5, key-press g (#32.6.1).

(2) For a specific rule (thereafter consecutively), enter q to backtrack to
the pause prompt (#32.16).

— enter G for a top-right prompt showing the number of rules in
the collection (#31.2.9);

— enter 1, or any valid number, to select the rule (not yet activated);

— once space-time patterns resume, key-press g to activate the rule;

— For the next rule enter g, eventually cycling back to rule 1.

(3) Waveform output is most pronounced when set to each single time-
step, not to the default 10 time-step moving average. To change this,
key-press G and at a top-right prompt (#32.12.7) enter enter 1.

(4) Important on-the-fly key-presses:

— toggle with 7 between random-wiring and regular CA;

— try the 3-way toggle j for input-histogram values plotted together
with the input-entropy plot;

— key-press 4 for a new random initial state. This is also required
if the dynamics stops — reaches and attractor [4];

5 In the k = 6 and k = 7 collections, not all rules are glider rules, so not all will pulse.
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— key-press c and e to contract/expand space-time patterns. Con-
tract to allow more room for the entropy-density scatter plot be-
low.

(5) Toggle showing the entropy-density scatter plot with u (#32.12.6).
While this is running,

— key-press , (comma) to toggle linking successive dots as in
Fig. 5 (c);

— key-press ? (question mark) to toggle re-randomising at each
time-step, which slows down iteration;

— key-press “ (inverted comma) to toggle showing running data of
the wave-length (wl) and wave-height (wh) in the terminal as in
Section 7. To save the data refer to #32.12.6.2.

(6) To change to value-density instead of entropy, toggle with s. The
input-histogram (and entropy-density scatter plot) will stop updating.

— key-press ; (semi-colon) to toggle showing the density return-map
(#32.12.7);

— key-press , (comma) to toggle linking successive dots as in
Fig. 6 (c);

— To save the density return-map data refer to #32.12.7.2.

(7) Other useful on-the-fly key-presses:

— key-press 3 to toggle space-time patterns coloured by value or by
neighbourhood/input-histogram colours;

— key-press t to toggle between a 2d movie and 2d vertical space-
time patterns as in Fig. 16, then # to toggle upward scrolling;

— when in normal 2d, key-press # to toggle space-time patterns
scrolling diagonally;

— key-press < to slow down iteration, > to revert to normal speed.

(8) Key-press q to pause at any time for a top-right window providing
options described in #32.16, including,

— enter net-n to re-set the random wiring (#17.7) as in Sect. 10.1 (7),
or with biases as in Fig. 3;

— key-press q as necessary to backtrack up the DDLab prompt se-
quence;

— key-press d to save wave-length data, or density return-map data
(#32.12.6.2 and #32.12.7.2).
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Fig. 16. The DDLab screen showing 2d space-time patterns, 100 × 100, scrolling
vertically upwards on the left. The present time-step is at the bottom. The
dark time-steps at the top are coloured by value, and below by neighbourhood
colours. To the right of space-time patterns is the entropy plot and the input-
histogram, below centre the entropy-density plot with linked dots. Interrupt
prompts are shown top-right, and on-the-fly reminder on the right. The rule is
v3k7 g3 (hex)622984288a08086a94.

10.3. One cell at a time sequential updating

To run an entropy-density plot for sequential updating one cell at a time
at random positions [1], as for the k = 7 rules in Fig. 14, amend steps in
Section 10.1 as follows;

— After step (7) enter return until the top-right prompt revise from:
(#31.1), enter u for a top-right updating window (#31.4).

— Enter p for a top-right partial order updating window (#31.4.3). For
both min: and max:, enter 1.

— At the entropy/density: prompt (#31.5), enter e as in step (8).



152 A. Wuensche, E. Coxon

Follow further steps as listed, then toggle showing the entropy-density
scatter plot with u as in step (5) in Section 10.2. You will see single-cell
updates in the 2d pattern, and a very slow trace of the plot. For other
“asynchronous and noisy updating” options refer to (#31.4). There can be
any combination of these settings, which can be toggled on-the-fly (#32.4).

11. Issues to explain the CAP model

Work explaining the CAP model is in progress. The emergence of gliders
in CA cannot be predicted directly from a rule-table, so in this sense, the
mechanisms are unresolved — they can only be observed by experiment, but
must entail feedbacks driving a glider’s head and eroding its tail. A general
theory to resolve this question would shed light on the underlying principles
of self-organisation. Pulsing when the wiring is randomised must utilise the
same feedbacks, but distributed throughout the network instead of localised
in a regular neighbourhood to create and move a glider.

Future work should also address the following issues:

— Because the pulsing waveform (shape/phase, wave-length, wave-height)
is observed to be diverse, how does the type of glider dynamics relate
to the waveform?

— Study how the pulsing waveform breaks down as the random wiring
reach is reduced — is there a phase transition?

— There is a very high probability that gliders imply pulsing, but the
few observed exceptions should be examined, gliders/no pulsing, and
pulsing/no gliders.

— Study how the sequential updating of one cell at a time at random
positions [1] can results in pulsing.

12. The need for a bio-oscillation model

In a world where much biology is produced by reproducing patters, pro-
duces reproducing patterns, or recognises these patterns, there has histori-
cally been focus on the chemistry and physics of thermodynamic equilibrium
more so than on the bio-physics of collective oscillatory phenomena. Oscilla-
tions can be found in all forms of life [12], but we have focused on mammalian
biology, and aspects of human physiology where oscillations play a crucial
role [1].

Although differential equation models of oscillations in single cells have
been proposed, such as the Hodgkins–Huxley equations, negative feedback
with a time delay, or coupled negative and positive feedback [13], currently
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there is no satisfactory theory to explain essential oscillations in whole or-
gans, for example, the heart beat, uterine contractions in childbirth, and
various rhythmic behaviours controlled by the central pattern generators of
the central nervous system, such as breathing and locomotion [1].

We are left searching for pacemaker neurones, pondering how signalling
in biofilms can occur faster than diffusion, how synchronisation can occur
over considerable distance and how biology is so robust with such inbuilt
redundancy.

We propose that clusters of excitable tissue are able to oscillate according
to their appropriate waveform because non-localised connectivity [14, 15] is
subjected to a specific rule of communication, the bio-rule, analogous to a
glider rule. The bio-rule is based on three (or more) cellular states: Firing,
Refractory, and Ready-to-fire, generated by chemical signalling [16], action
potentials, calcium and sodium ion channels and concentrations. This model
is favoured by evolution because a variety of synchronized waveforms can
arise from different bio-rules. Furthermore, a given waveform is independent
of the exact connection network, is noise tolerant, can be turned off and on
by altering the reach of non-local connectivity, and is robust to noise, cell
loss, and functional reserve.

The CAP model carries the ability and benefits of modelling multiple
cells simultaneously forming a platform to probe the relationship between
network connectivity at one level and collective behaviour at another. This
summary of the more detailed reasoning presented in [1] suggests that the
CAP model is applicable as a conceptual model for bio-oscillations and can
provide a basis for further development of the ideas.

13. Summary

We have presented further evidence and results for this surprising phe-
nomenon of spontaneous, sustained and robust rhythmic oscillations, pulsing
dynamics, when random wiring is applied to a 2d “glider” rule running in a
3-value totalistic CA.

We have reiterated the potential of the CAP model to provide a much
needed decentralised model for bio-oscillations in nature, specifically in the
case of mammalian excitable tissue.

We have defined the system’s architecture, and identified the behaviour
for both glider dynamics and pulsing, which are intimately related, and noted
the issues that require explanation. A guide to the relevant functions in
the software DDLab to repeat and extend pulsing experiments is provided.
However, the underlying mechanisms remain unresolved and are open to
further study and research.
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Experiments and figures were made with DDLab (http://www.ddlab.
org/) — where the rules and methods are available, so repeatable [5].
Thanks to Inman Harvey for conversations regarding asynchronous updat-
ing, to Terry Bossomaier for exchanges regarding phase transitions, and to
Paul Burt and Muayad Alasady for comments regarding bio-oscillations.
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