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We derive a new, exact formula for the estimate of the initial-energy
densities from a new family of finite and exact solution of relativistic per-
fect fluid hydrodynamics. The new formula depends non-trivially on the
speed of sound and on the shape or width parameter of the measured
(pseudo)rapidity distribution.
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1. Introduction

This manuscript is the second part of a manuscript series. The first part
deals with the presentation of a recently found, finite and exact family of
solutions of perfect fluid hydrodynamics, as well as the calculation of the
rapidity and the pseudorapidity density distributions. The (pseudo)rapidity
density distributions can be well-described by fitting the parameters of the
solution to the data, as described and illustrated in Ref. [1].

This family of solutions can also be used to derive an advanced estimate
of the initial-energy densities in high-energy heavy-ion and hadron-induced
reactions. The precise estimation of these initial-energy densities is an im-
portant but difficult problem, and Bjorken’s initial-energy estimation is one
of the top cited results in heavy-ion physics.

2. Bjorken’s estimate and its corrections

The famous formula of Bjorken serves to estimate the initial-energy den-
sity of a longitudinally boost-invariant, cylindrical system. It is a simple,
phenomenological formula that can be written as
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εBj
0 =

〈mT〉
R2πτ0

dN

dy
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y=0

. (1)

This estimate was based on the Hwa–Bjorken solution [2, 3] that corre-
sponds to a flat rapidity density distribution. However, the observed rapidity
density is finite, decreases at large rapidities even at the currently highest
CERN LHC energies of

√
s = 13 TeV. For accelerationless, boost-invariant

Hwa–Bjorken-flows [2, 3], the initial- and final-state (indicated by the “i”
and “f” indices) space-time rapidities ηx are on the average equal to the
rapidity y. Thus, for accelerating solutions, one has to apply a correction

ε0 = εBj
0

dy

dηfx

dηfx
dηix

. (2)

The first factor of the correction is the shift of the saddle point corresponding
to the location in ηx of the maximum emittivity for particles with a given
rapidity y. The second factor describes the increase of the size in space-
time rapidity of a given volume element in accelerating flows. From the 1+1
dimensional, exact and accelerating solution of Csörgő, Nagy and Csanád
(CNC), these corrections were evaluated and the advanced CNC estimation
of the initial-energy density is obtained [4, 5] as follows:

εCNC
0 (λ) = εBj

0 (2λ− 1)

(
τf
τ0

)λ−1

. (3)

Here, λ ≥ 1 is the acceleration parameter, τ0 stands for the thermalization
time, corresponding to the initial value of the longitudinal proper time, and
we denoted the final-state proper time by τf . In the CNC solutions, the fluid
rapidity is linear in the space-time rapidity ηx, given by Ω = ληx, and the
Hwa–Bjorken solution is recovered in the λ → 1 limit. In this λ = 1 case,
the velocity field lacks acceleration, and the advanced CNC estimation of
the initial-energy density recovers Bjorken’s formula.

One of the known problems of this CNC estimation is that the 1+1
dimensional CNC solution is valid only for a superhard equation of state,
corresponding to κ = 1 = c2s , which is an unrealistic value. To handle this
problem, Refs. [4–6] proposed a conjecture, that satisfied 5 criteria:

1. It has to reproduce the EoS-independent Bjorken estimate for λ→ 1.
2. It has to reproduce the exact CNC estimate for any λ, for κ→ 1.
3. It has to follow the known hydro-behavior for the energy density ε(τ),

corresponding to exact solutions valid for any (temperature indepen-
dent) c2s = 1

κ . In these solutions, an ε ∝ (τ0/τ)
1/κ behavior is found,

assuming that the fluid volume is proportional to τ .
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4. It should approximately reproduce the results of numerical hydro-
calculations; most importantly, the additional correction for κ > 1
should increase the initial-energy density.

5. Out of the possible formulas satisfying criteria 1–4, select the simplest
one, according to the principle of Occam’s razor.

Applying the principle of Occam’s razor, the conjectured formula of the
initial-energy density that satisfies the above criteria is [7]

εcon0 (κ, λ) = εBj
0 (2λ− 1)

(
τf
τ0

)λ−1( τf
τ0

)(λ−1)(1− 1
κ)
. (4)

According to our expectations, an exact calculation of the initial-energy
density using an accelerating (λ > 1) solution with realistic equation of
state (cs < 1 or κ > 1) should reproduce the known corrections in the
corresponding limits, corresponding to criteria 1, 2 and 3.

Let us test the initial-energy density estimates of (1), (3) and (4), uti-
lizing the exact results from the CKCJ solution, that has an explicit de-
pendence on the EoS parameter κ and the acceleration parameter λ. At
midrapidity, the average transverse mass per particle is the ratio of the
final-state energy density εf and particle density nf

〈mT〉 =

(
dE
dηx

)
(

dN
dηx

) =
dE

dN
=
εf
nf
, (5)

i.e. the final-state energy density can be expressed by the final-state particle
density as εf = 〈mT〉nf . The rapidity distributions at midrapidity are cal-
culated from the CKCJ solution, using the saddle-point method. In order
to express the initial-energy density, we used the ε(τ, ηx) field of the CKCJ
solution in the ηx ≈ 0 limit and took the proper time at the final state, τf .
Using the proportionality between εf and nf , we find a new, exact result for
the initial-energy density

ε0(κ, λ) = εBj
0 (2λ− 1)

(
τf
τ0

)λ(1+ 1
κ)−1

. (6)

Rather surprisingly, this formula depends on the equation of state, and this
dependence is not vanishing in the λ → 1 limit. Due to that Bjorken’s for-
mula (1) is not reproduced in the accelerationless case, criteria 1 is violated.
The κ→ 1 limit does not give back the advanced estimation of the CNC so-
lution, so criteria 2 is violated too. Our new, exact result includes Bjorken’s
estimate as a prefactor that is multiplied by two new factors, detailed as
follows.
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The known (2λ− 1) (τf/τ0)
λ−1 factor comes from the shift of the max-

imum emmitivity and the change of the volume element. In the λ → 1
limit, it is vanishing. However, the EoS-dependent factor is a new correc-
tion which violates both the Bjorken and the CNC limit, and it vanishes
only for κ → ∞. According to the p = ε/κ equation of state, if κ goes to
infinity, the speed of sound and the pressure as well becomes zero. Con-
sequently, the new, EoS-dependent correction factor takes into account the
work, which is done by the pressure. Ergo, the Bjorken estimation lacks
not only the effects of acceleration, but also the initial energy that is con-
verted to the work of the pressure. Thus, Bjorken’s estimate is valid only
for dust, it neglects the second term of the fundamental thermodynamic re-
lation: dE = TdS − pdV . To visualize the effect of not just the work, but
also the acceleration, in Fig. 1, we show the initial-energy density ε0 and

Fig. 1. Initial-energy densities (top) and pressures (bottom) from the CKCJ so-
lution are shown with solid lines and compared to Bjorken’s estimate, indicated
with dashed lines. The parameters of the left panel correspond to fit results of the
CKCJ solution to CMS p+p data at

√
s = 7 TeV, while those of the right panel

correspond to similar fits to PHOBOS Au+Au data at
√
sNN = 200 GeV.

the initial pressure p0 = ε0/κ as functions of the pseudorapidity density of
charged particles for our, exact result and for Bjorken’s case. In Fig. 2, we
compared the same quantities through their τf/τ0 dependence. Here, we col-
ored the contribution of the Bjorken estimation to gray/blue. We used light
gray/yellow color for the contribution of the corrections that come from the
consideration of the work and the acceleration. For Fig. 1 and Fig. 2, the
acceleration parameter is determined by fits of the pseudorapidity density
of the CKCJ solution to PHOBOS Au+Au data at

√
sNN = 200 GeV [9]

and CMS p+p data at
√
s = 7 TeV [8]. These fits are shown in Fig. 3.
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Fig. 2. (Color online) Initial-energy densities (top) and pressures (bottom) from
the CKCJ solution are shown with solid lines and compared to Bjorken’s estimate,
indicated with dashed lines, as a function of the pseudorapidity density of charged
particles. The parameters of the left panel correspond to fit results of the CKCJ
solution to CMS p+p data at

√
s = 7 TeV, while those of the right panel correspond

to similar fits to PHOBOS Au+Au data at
√
sNN = 200 GeV.

Fig. 3. Left panel shows fits with the CKCJ hydro-solution to CMS p+p data
at
√
s = 7 TeV, using Teff = 145 MeV. The right panel is the same, but for

PHOBOS Au+Au data at
√
sNN = 200 GeV in the 0–5% centrality class, using

Teff = 211 MeV. The speed of sound is fixed to c2s = 1/κ = 0.1 in both cases.

Our exact result takes into account not only the lack of the rapidity
plateaux and the related acceleration of the fluid, but also the work done
by the pressure during the expansion. The Bjorken estimation clearly un-
derestimates the initial-energy density, apparently it lacks both work and
acceleration effects.
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The exact result of the CKCJ solution and the conjectured formula of
the CNC solution are compared through their ratio

ε0(κ, λ)

εcon0 (κ, λ)
=

(
τf
τ0

) 2λ−1
κ

−λ+1

. (7)

If we take the λ and the κ parameter from Fig. 3, then according to the fits
to CMS p+p data at

√
s = 7 TeV, the difference between the conjectured

formula and the new, exact result of the initial-energy density is only 2%.
The fits to PHOBOS Au+Au data at

√
sNN = 200 GeV predicts more signi-

ficant deviation, it is almost 12%. Thus, the conjecture of the CNC solution
is numerically surprisingly precise, but pro forma it is inaccurate.

3. Summary

A new family of analytic and accelerating, exact and finite solutions
of relativistic, perfect fluid hydrodynamics for 1+1 dimensional expanding
fireball has been found recently by Csörgő, Kasza, Csanád and Jiang [1, 6].

This new family of solutions generalizes the 1+1 dimensional Csörgő–
Nagy–Csanád solutions for realistic equation of state. With the new solution,
the initial-energy density has been evaluated. The results were compared to
Bjorken’s and CNC’s initial-energy density estimation [2, 4, 7] and to the
CNC conjecture [7]. Our new result supersedes all these earlier formulae.

Further generalizations of the CKCJ solution to three dimensionally ex-
panding fireballs, as well as to solutions with a temperature-dependent speed
of sound are being explored at the time of closing this manuscript.
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