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Measurement of quantum statistical correlation functions in high-energy
nuclear physics is an important tool to investigate the QCD phase diagram.
It may be used to search for the critical point, and also to understand under-
lying processes such as in-medium mass modifications or partially coherent
particle production. Furthermore, the measurements of the femtoscopic
correlation functions shed light on the space-time structure of particle pro-
duction. Consequently, the precise measurements and description of the
correlation functions are essential. The shape of the two-pion Bose–Einstein
correlation functions were often considered to be Gaussian, but the recent
precision of the experiments reveals that the statistically correct assump-
tion is the more general Lévy distribution. In this paper, we present the
recent results of the measurements of two-pion Lévy-stable Bose–Einstein
correlation functions in Au+Au collisions at PHENIX.
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1. Introduction

Bose–Einstein correlation measurements represent a broadly used tech-
nique in high-energy nuclear physics. Intensity correlations were discovered
in radioastronomy by R. Hanbury Brown and R.Q. Twiss, when they inves-
tigated the angular diameter of stars [1]. Independently, momentum corre-
lations of identical pions were observed in proton–antiproton annihilation by
Goldhaber and collaborators. This could be explained by the Bose–Einstein
symmetrization of the pion wave function [2].
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The Bose–Einstein correlations are related to the space-time distribution
of the particle emitting source through a Fourier transform, hence the mea-
sured correlations have a clear connection to the size and the shape of the
source. For the parameterization of this source usually a Gaussian profile
was assumed, but in imaging measurements [3], a long tail was observed,
motivating the use of the more general Lévy distributions. In this paper,
we report on the two-pion Bose–Einstein correlations at

√
sNN = 200 GeV

Au+Au collisions in 0–30% centrality [4].

2. The PHENIX experiment

A detailed description of the PHENIX detector system can be found in
Ref. [5]. We reduce our discussion to the most important detectors used in
this analysis. The Beam–Beam Counters (BBC) and Zero Degree Calorime-
ters (ZDC) were used to characterize the events. The Drift Chamber (DC)
and the Pad Chambers (PC) were used for tracking. We used charged pi-
ons in the analysis which were identified with lead scintillators (PbSc) and
high-resolution time-of-flight (ToF) detectors in both detector arms. We
measured pions in the 0.2 GeV/c ≤ pT ≤ 0.85 GeV/c transverse momentum
range.

3. Two-particle correlations and the Lévy distribution

The two-particle correlation functions can be defined with the single-
particle and pair momentum distributions as

C2 =
N2(p1, p2)

N1(p1)N1(p2)
. (1)

The momentum distribution can be expressed with the S(x, p) source dis-
tribution function as [6]

N2(p1, p2) =

∫
dx41dx

4
2S(x1, p1)S(x2, p2) |Ψp1,p2(x1, x2)|

2 , (2)

where Ψ is the symmetrized pair wave function. The one-particle momentum
distribution provides a normalization for this. The C2 correlation function
can then be written up with the source function as

C2(q,K) = 1 +

∣∣∣∣∣ S̃(q,K)

S̃(0,K)

∣∣∣∣∣
2

, (3)

where q = p1 − p2 is the momentum difference and K = 0.5(p1 + p2) is the
average pair transverse momentum and˜denotes the Fourier transform with
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respect to the variable x. The above expression for C2 takes the value of 2
at q = 0 relative momentum per definition. However, our (and, in general,
most high-energy nuclear physics) measurements cannot resolve momentum
differences below a few MeV/c, therefore, we only can extrapolate the mea-
sured correlation functions to q = 0. It turns out that the extrapolated value
of the C2 does not reach the value 2, but 1+λ. This observation is quantified
with the intercept parameter as 0 < λ ≤ 1. The value of the intercept pa-
rameter λ may be explained in term of the core–halo picture [7]: it is related
to the core fraction of the particle producing source as λ = (Ncore/Ntotal)

2

(where the core is surrounded by a halo of the decay products of long-lived
resonances), as detailed in Refs. [4, 7]. With these, the correlation function
can be given as

C2(q,K) = 1 + λ(K)

∣∣∣∣∣ S̃(q,K)

S̃(0,K)

∣∣∣∣∣
2

, where λ =

(
Ncore

Ncore +Nhalo

)2

. (4)

In heavy-ion experiments, the shape of the above discussed correlation
functions are usually assumed to be Gaussian. One may have to renounce
this simple premise once the expansion of the source created in the collision
is taken into account. In the expanding hadron gas, the particles have an
increasing mean-free path, which may lead to anomalous diffusion and the
appearance of Lévy distributions [8]. The one-dimensional, symmetric Lévy
distribution is defined by a Fourier transform as

L =
1

(2π)3

∫
d3qeiq·re−

1
2
|qR|α . (5)

This distribution has two parameters: the α, so-called stability index, and
the R Lévy scale or size parameter. If we assume that the source function
has Lévy shape, with Eq. (4), the following can be deduced:

C
(0)
2 (q,K) = 1 + λ(K)e−(R(K)q)α(K)

. (6)

The (0) index indicates that none of the final-state effects is taken into ac-
count. In our case, the only important one is the Coulomb repulsion of
the measured particles. We used the modified Sinyukov type of method as
detailed in Refs. [4, 9].

4. Results

We measured two-pion Bose–Einstein correlation functions and parame-
trized them with the above described Lévy-type correlation function, as also
discussed in Ref. [4]. We determined the mT dependence of the parameters
in 31 bins, using a 0–30% centrality selection in

√
sNN = 200 GeV Au+Au

collisions.
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The obtained R Lévy scale parameter results are shown in Fig. 1. While
these values may have to be interpreted differently from the usual Gaussian
HBT radii, they show similar, hydro-inspired R ∝ 1/

√
mT trend.
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Fig. 1. The Lévy scale (left-hand side) shows similar trend as in the Gaussian case.
The 1/R2 scaling behavior predicted from hydrodynamical model calculations e.g.
in Refs. [14–16] also stays valid (right-hand side).

In sufficiently hot and dense QCD matter, the anomalously broken UA(1)
symmetry may be restored, in which case the η′ meson has reduced mass,
hence more η′ mesons will be produced. The η′ could decay into pions, which
contribute to the halo, hence decrease λ. Due to the specific kinematics, a
low mT suppression was predicted, as detailed in Ref. [10]. The measured
λ(mT) is not incompatible with this prediction, as indicated in the left plot
of Fig. 2, where the “hole” or decreasing trend of the intercept parameter is
clearly visible. On the right-hand side, the λ/λmax is presented along with
a unity minus Gaussian fit and resonance model predictions.
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Fig. 2. The measured intercept parameter (left-hand side) and its normalized ver-
sion (right-hand side). In both plots, the decreasing trend is clearly visible.
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The α shape parameter can characterize the deviation of the source S(r)
from the Gaussian or the Cauchy distributions. In the case of α = 2, the
Gaussian case is restored, while α = 1 corresponds to a Cauchy shaped
source and an exponential correlation function. This parameter is also some-
times associated to one of the critical exponents, namely to the critical ex-
ponent of the spatial correlations [8, 11]. Thus, the precise measurements of
this parameter in various systems could indicate the vicinity of the supposed
critical point of the quark–hadron transition on the QCD phase diagram.
Proceedings publications on the beam energy and centrality dependence of
this parameter can be found in Refs. [12, 13]. The left panel of Fig. 3
shows the measured α parameter as a function of average pair mT. This
figure shows that the α parameter in 200 GeV Au+Au collisions is between
the mentioned special cases (Gaussian and Cauchy) and has a slight non-
monotonicity as a function of mT.
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Fig. 3. The Lévy shape parameter α (left-hand side) exhibits a slight non-monotonic
behavior as a function of mT and its average value differs from the Gaussian and
the conjectured critical value. The new scaling parameter R̂ is remarkably linear
as the function of mT.

Finally, let us note that we found a new empirical scaling parameter
which is composed from the three Lévy parameters as

1

R̂
=
λ(1 + α)

R
. (7)

Its value versus mT is shown in the right panel of Fig. 3. A very clear
linear trend in 1/R̂ versus mT can be observed, as well as a reduction of
the statistical uncertainty. The latter can be explained by the correlation
of the other fit parameters, and by R̂ being a “strong mode” of these Lévy
fits. However, the linear connection shown in Fig. 3 is nor predicted neither
explained by any of the known model as far as we know.
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5. Conclusions
We measured two-pion Lévy-stable Bose–Einstein correlation functions

at
√
sNN = 200 GeV in Au+Au collisions at PHENIX. We parametrized

these with correlation functions calculated from a theoretically motivated
generalization of the Gaussian distribution: the Lévy-distribution. This
yields a statistically acceptable description of the measured data. We deter-
mined the mT dependence of the Lévy fit parameters. The Lévy stability
parameter is measured to be different from any previously assumed special
distribution and has a weak mT dependence. We furthermore concluded
that the measured values and trends of the parameters do not contradict
the partial restoration of the UA(1) symmetry. We also observed a hydro-
predicted scaling of the Lévy scale versus mT, as well as a new empirical
scaling parameter R̂.

The author was supported by the NKFIH grant FK 123842 and EFOP
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