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We derive a new formula for the longitudinal HBT radii of the two
particle Bose-Einstein correlation function from a new family of finite and
exact, accelerating solution of relativistic perfect fluid hydrodynamics for
a temperature-independent speed of sound. The new result generalizes
the Makhlin—Sinyukov and Herrmann-Bertsch formulae and leads to an
advanced life-time estimate of high-energy heavy-ion and proton—proton
collisions.
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1. Introduction

This manuscript is the third part of a manuscript series. This series
presents various applications of a new, accelerating, finite and exact family of
solutions of perfect fluid hydrodynamics, the recently found Csoérgé—Kasza—
Csanad—Jiang (CKCJ) family of solution of Ref. [1]. The first part of this
series [2] fixes the notation, summarizes this class of exact solutions and
evaluates the rapidity and pseudorapidity density distributions. The second
part [3] evaluates the initial-energy densities in high-energy collisions [1],
and provides a fundamental correction to the renowned Bjorken estimate of
initial-energy density [4].

In this manuscript, we evaluate the Bose—Einstein correlation functions
in a Gaussian approximation from the CKCJ solutions [1]. Given that the
considered dynamics is a 1+1 dimensional expansion, we evaluate Ry, the
Hanbury Brown-Twiss (HBT) radius in the longitudinal (beam) direction.
This longitudinal HBT radius parameter is proportional to the mean freeze-
out time of the fireball, thus the advanced evaluation of its transverse mass
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dependence and its constant of proportionality for finite, longitudinally non-
boost-invariant fireballs may have important physics implications on life-
time determinations.

2. Bose—Einstein correlations and the longitudinal HBT radii

In high-energy heavy-ion collisions, the Bose-Einstein correlation func-
tions (BECF) measure characteristic sizes of the particle emitting source,
corresponding to lengths of homogeneity [5]. In high-energy heavy-ion col-
lisions, the particle emitting source can be approximated as a locally ther-
malized fireball, surrounded by a halo of long-lived resonances, this is the
so-called core—halo picture. The momentum-dependent intercept parameter
Ay of the two-particle Bose—Einstein correlation function can be interpreted
in the core-halo picture of Ref. [6] as follows:

N\ ? N \°
v (%) - () 1)
N Nc + Nh
where N = N.+ Vy, is the total number of the emitted particles with a given
momentum, adding the contributions from both the core N, and the halo
Ny. The fireball that undergoes a hydrodynamical evolution corresponds
to core [7]. For locally thermalized sources, the lengths of homogeneity
are expressible in terms of the derivatives of the fugacity, exp (u(z)/T(x))
and the locally thermalized momentum distribution, exp (—k*u,(x)/T(x)),
corresponding to the so-called geometrical and thermal length scales |7].

Assuming an effective Gaussian source for the core particles, the BECF can
be expressed in terms of the Bertsch—Pratt variables as follows:

C(Ak, K) = 1A, exp(— R0, Q200 — B2 Q2 — REQY — 2R, 1 QourQL) -

2)
All the fit parameters (\i, Rside, Rout, R and Rgut 1) depend on the mean
momentum of the particle pair, K* = 0.5(k{’ + k5). The four-momentum
of a given particle is denoted by k = (Ej, k) = (Ek, ks, ky, k2). The three-
components of the relative and mean momenta are denoted as

Ak = k1 — ko,
K = 05(k1 + ko) .

In the Bertsch—Pratt decomposition of the relative momentum [8, 9|, the
principal directions are defined as follows: The out direction is perpendicular
to the beam axis and parallel to the mean transverse momentum of the boson
pair; the longitudinal direction (indicated by subscript L) is parallel to the
beam axis (r,), and the side direction is orthogonal to the previous two
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directions. This Bertsch—Pratt decomposition of the relative momentum is
defined as follows:

|Ak x K|
Qside = T 3
Ak - K
Qout = W, (4)
QL = ki — ko (5)

If the Bose-Einstein correlation function is an approximately Gaussian in
terms of the relative momenta, the Gaussian HBT radii RQ- can be in-
troduced, with {7, j} € {side, out, long}. These Gaussian Bertsch Pratt-radii
can be related to the variances of the hydrodynamically evolving core, while
the halo of the long-lived resonances is responsible for the effective reduction
of the strength of the correlation function:

R2,_] <CCZSC]> <ji>c<ij>c . (6)

Here, the (A). stands for the average of quantity A in the core, 7, j stand
for directions (side, out or long) and

T = x — Bit, (7)
ki1 + kio

, = el T2 8

P E) + Ey ®)

In this manuscript, we focus on the longitudinal radii, so the radii of the side
and out direction are not discussed, see e.g. Ref. |7] for more details on this
point. As discussed in [10] and illustrated in Fig. 1, for a 141 dimensional
relativistic source, the longitudinal radius in an arbitrary frame reads as

Rf = (B sinh (n3) — cosh (n}))* 77 An + (Br, cosh () — sinh (13))% A7?
(9)
where 7, is the space-time rapidity, and 7} is the main emission region of
the source, which derived by the saddle-point calculation of the rapidity
density, A7 and An, are characteristic sizes around 7¢ and n$. This formula
simplifies a lot in the LCMS (longitudinally co-moving system) frame of the
boson pair, where g, = 0:

R? = cosh? () 7 An2 + sinh? (n5) Ar?. (10)

Our new family of solutions are finite and limited to a narrow rapidity in-
terval around midrapidity [1]. At midrapidity, if n} ~ 0, the above equation
can be simplified even further:

RL :TfAnz- (11)
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Fig. 1. Space-time picture of particle emission for longitudinally expanding fireballs.

3. Previous results on the longitudinal HBT radius

For a Hwa-Bjorken-type of accelerationless, longitudinal flow [4, 11],
Makhlin and Sinyukov determined the longitudinal length of homogeneity
in Ref. [5] as

Tk

Ry, = 7p; . (12)
In this equation, T} stands for the freeze-out temperature, mr is the trans-
verse mass of the particle pair and 7g; is the mean freeze-out time of the
Hwa—Bjorken solution. This result makes it possible to determine the life-
time, i.e. 7g; of the reaction from the measurement of the longitudinal HBT
radius parameter, provided that Tt ~ m, =~ 140 MeV can be estimated from
the analysis of the single particle spectra.

Evaluating the HBT radii from the same Hwa-Bjorken solution [4, 11],
Herrmann and Bertsch obtained a more accurate result in Ref. [12], using a
Gaussian approximation for the longitudinal HBT radius at midrapidity, in
terms of Bessel functions K (z)and Ks(z), as follows:

2K2 mT/Tf

Ry =
L= Ky (m7/T)

(13)

This formula improves the Sinyukov—Makhlin formula (12) for lower mt/T}
values, and approaches it in the large my /T limit.

If the flow is accelerating, the estimated origin of the trajectiories is
shifted back in proper-time, thus 7p; is underestimating the life-time of the
reaction. The correction was estimated, based on the modification of the
flow-profile, from the Csorgé—Nagy—Csanad (CNC) solution [13, 14] as fol-

lows:
Tf Ty
Ry, = —/— 14
L= mr’ (14)
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where 7t stands for the freeze-out time. In the A — 1 boost-invariant limit,
this formula also reproduces the Makhlin—Sinyukov formula, but for the
realistic A > 1 parameter values, it yields larger life-times as compared to
the Makhlin—Sinyukov formula.

4. The longitudinal HBT radius parameter of the CKCJ solution

Let us evaluate the emission function for the CKCJ solution of Refs. [1-3].
The integration of the Cooper—Frye formula is performed by the saddle-point
approximation. Near to midrapidity, the fluid rapidity is well-approximated
by a linear function of the space-time rapidity: {2 =~ An,. Using a saddle-
point integration in 7,, we obtain the rapidity distribution

AN (2nan2)? [k w T(0e) e (_ Fyu” )L_n . (15)

dy ~ 2rh wt cosh(2 — n, Tt ()

Here, 1} stands for the saddle-point, which is found to be proportional to
the rapidity y: 75 ~ 5%5. At midrapidity, the saddle-point vanishes and
the emission function can be well-approximated by a Gaussian centered on

zero. The width of this Gaussian is given by An, as

(16)

Amyro o] H 1
e mr \/A2X —1)

At midrapidity, these considerations lead to the following longitudinal HBT

radius parameter:
T T¢
Ry, =mAn,~ ———/ —. 17
Lo e A2r— 1)V omr 17)

Surprisingly, this result is independent of the equation of state, and it is
formally different from the CNC estimate.

Our result thus presents an important step forward: once the parame-
ter A of the acceleration is determined from the fits to the (pseudo)rapidity
distributions [2|, this parameter combined with the longitudinal HBT radius
measurement can be used to provide an advanced estimate of the life-time
of the reaction, solving Eq. (17) for the life-time 7¢. The significance of our
advanced formula is illustrated in figure 2.
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Fig. 2. (Color online) The HBT radius Ry, (mr) (left) and 1/R? (mr) (right) of the
CKCJ solution are shown with solid red lines and compared to earlier estimations.
The parameters correspond to the fit results of the CKCJ solution to p+p collisions
at /s =7 TeV [2].
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