
Vol. 12 (2019) Acta Physica Polonica B Proceedings Supplement No 2

A NEW AND FINITE FAMILY OF SOLUTIONS OF
HYDRODYNAMICS: PART III: ADVANCED ESTIMATE

OF THE LIFE-TIME PARAMETER∗

T. Csörgő, G. Kasza

EKU KRC, 3200 Gyöngyös, Mátrai út 36, Hungary
and

Wigner RCP, 1525 Budapest 114, P.O. Box 49, Hungary

(Received January 9, 2019)

We derive a new formula for the longitudinal HBT radii of the two
particle Bose–Einstein correlation function from a new family of finite and
exact, accelerating solution of relativistic perfect fluid hydrodynamics for
a temperature-independent speed of sound. The new result generalizes
the Makhlin–Sinyukov and Herrmann–Bertsch formulae and leads to an
advanced life-time estimate of high-energy heavy-ion and proton–proton
collisions.
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1. Introduction

This manuscript is the third part of a manuscript series. This series
presents various applications of a new, accelerating, finite and exact family of
solutions of perfect fluid hydrodynamics, the recently found Csörgő–Kasza–
Csanád–Jiang (CKCJ) family of solution of Ref. [1]. The first part of this
series [2] fixes the notation, summarizes this class of exact solutions and
evaluates the rapidity and pseudorapidity density distributions. The second
part [3] evaluates the initial-energy densities in high-energy collisions [1],
and provides a fundamental correction to the renowned Bjorken estimate of
initial-energy density [4].

In this manuscript, we evaluate the Bose–Einstein correlation functions
in a Gaussian approximation from the CKCJ solutions [1]. Given that the
considered dynamics is a 1+1 dimensional expansion, we evaluate RL, the
Hanbury Brown–Twiss (HBT) radius in the longitudinal (beam) direction.
This longitudinal HBT radius parameter is proportional to the mean freeze-
out time of the fireball, thus the advanced evaluation of its transverse mass
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dependence and its constant of proportionality for finite, longitudinally non-
boost-invariant fireballs may have important physics implications on life-
time determinations.

2. Bose–Einstein correlations and the longitudinal HBT radii

In high-energy heavy-ion collisions, the Bose–Einstein correlation func-
tions (BECF) measure characteristic sizes of the particle emitting source,
corresponding to lengths of homogeneity [5]. In high-energy heavy-ion col-
lisions, the particle emitting source can be approximated as a locally ther-
malized fireball, surrounded by a halo of long-lived resonances, this is the
so-called core–halo picture. The momentum-dependent intercept parameter
λ∗ of the two-particle Bose–Einstein correlation function can be interpreted
in the core–halo picture of Ref. [6] as follows:

λ∗ =

(
Nc

N

)2

=

(
Nc

Nc +Nh

)2

, (1)

where N = Nc+Nh is the total number of the emitted particles with a given
momentum, adding the contributions from both the core Nc and the halo
Nh. The fireball that undergoes a hydrodynamical evolution corresponds
to core [7]. For locally thermalized sources, the lengths of homogeneity
are expressible in terms of the derivatives of the fugacity, exp (µ(x)/T (x))
and the locally thermalized momentum distribution, exp (−kµuµ(x)/T (x)),
corresponding to the so-called geometrical and thermal length scales [7].
Assuming an effective Gaussian source for the core particles, the BECF can
be expressed in terms of the Bertsch–Pratt variables as follows:

C(∆k,K) = 1+λ∗ exp
(
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)
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(2)
All the fit parameters (λ∗, Rside, Rout, RL and R2

out,L) depend on the mean
momentum of the particle pair, Kµ = 0.5(kµ1 + kµ2 ). The four-momentum
of a given particle is denoted by k = (Ek,k) = (Ek, kx, ky, kz). The three-
components of the relative and mean momenta are denoted as

∆k = k1 − k2 ,

K = 0.5 (k1 + k2) .

In the Bertsch–Pratt decomposition of the relative momentum [8, 9], the
principal directions are defined as follows: The out direction is perpendicular
to the beam axis and parallel to the mean transverse momentum of the boson
pair; the longitudinal direction (indicated by subscript L) is parallel to the
beam axis (rz), and the side direction is orthogonal to the previous two
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directions. This Bertsch–Pratt decomposition of the relative momentum is
defined as follows:

Qside =
|∆k ×K|
|K|

, (3)

Qout =
∆k ·K
|K|

, (4)

QL = k1,z − k2,z . (5)

If the Bose–Einstein correlation function is an approximately Gaussian in
terms of the relative momenta, the Gaussian HBT radii R2

i,j can be in-
troduced, with {i, j} ε {side, out, long}. These Gaussian Bertsch–Pratt-radii
can be related to the variances of the hydrodynamically evolving core, while
the halo of the long-lived resonances is responsible for the effective reduction
of the strength of the correlation function:

R2
i,j = 〈x̃ix̃j〉c − 〈x̃i〉c〈x̃j〉c . (6)

Here, the 〈A〉c stands for the average of quantity A in the core, i, j stand
for directions (side, out or long) and

x̃i = xi − βit , (7)

βi =
ki,1 + ki,2
E1 + E2

. (8)

In this manuscript, we focus on the longitudinal radii, so the radii of the side
and out direction are not discussed, see e.g. Ref. [7] for more details on this
point. As discussed in [10] and illustrated in Fig. 1, for a 1+1 dimensional
relativistic source, the longitudinal radius in an arbitrary frame reads as

R2
L = (βL sinh (ηsx)− cosh (ηsx))2 τ2f ∆η2x + (βL cosh (ηsx)− sinh (ηsx))2 ∆τ2 ,

(9)
where ηx is the space-time rapidity, and ηsx is the main emission region of
the source, which derived by the saddle-point calculation of the rapidity
density, ∆τ and ∆ηx are characteristic sizes around τf and ηsx. This formula
simplifies a lot in the LCMS (longitudinally co-moving system) frame of the
boson pair, where βL = 0:

R2
L = cosh2 (ηsx) τ2f ∆η2x + sinh2 (ηsx) ∆τ2 . (10)

Our new family of solutions are finite and limited to a narrow rapidity in-
terval around midrapidity [1]. At midrapidity, if ηsx ≈ 0, the above equation
can be simplified even further:

RL = τf∆ηx . (11)
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Fig. 1. Space-time picture of particle emission for longitudinally expanding fireballs.

3. Previous results on the longitudinal HBT radius

For a Hwa–Bjorken-type of accelerationless, longitudinal flow [4, 11],
Makhlin and Sinyukov determined the longitudinal length of homogeneity
in Ref. [5] as

RL = τBj

√
Tf
mT

. (12)

In this equation, Tf stands for the freeze-out temperature, mT is the trans-
verse mass of the particle pair and τBj is the mean freeze-out time of the
Hwa–Bjorken solution. This result makes it possible to determine the life-
time, i.e. τBj of the reaction from the measurement of the longitudinal HBT
radius parameter, provided that Tf ≈ mπ ≈ 140 MeV can be estimated from
the analysis of the single particle spectra.

Evaluating the HBT radii from the same Hwa–Bjorken solution [4, 11],
Herrmann and Bertsch obtained a more accurate result in Ref. [12], using a
Gaussian approximation for the longitudinal HBT radius at midrapidity, in
terms of Bessel functions K1(z)and K2(z), as follows:

RL = τf

√
Tf
mT

√
2K2(mT/Tf)

K1(mT/Tf)
. (13)

This formula improves the Sinyukov–Makhlin formula (12) for lower mT/Tf
values, and approaches it in the large mT/Tf limit.

If the flow is accelerating, the estimated origin of the trajectiories is
shifted back in proper-time, thus τBj is underestimating the life-time of the
reaction. The correction was estimated, based on the modification of the
flow-profile, from the Csörgő–Nagy–Csanád (CNC) solution [13, 14] as fol-
lows:

RL =
τf
λ

√
Tf
mT

, (14)
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where τf stands for the freeze-out time. In the λ→ 1 boost-invariant limit,
this formula also reproduces the Makhlin–Sinyukov formula, but for the
realistic λ > 1 parameter values, it yields larger life-times as compared to
the Makhlin–Sinyukov formula.

4. The longitudinal HBT radius parameter of the CKCJ solution

Let us evaluate the emission function for the CKCJ solution of Refs. [1–3].
The integration of the Cooper–Frye formula is performed by the saddle-point
approximation. Near to midrapidity, the fluid rapidity is well-approximated
by a linear function of the space-time rapidity: Ω ≈ ληx. Using a saddle-
point integration in ηx, we obtain the rapidity distribution

dN

dy
≈
(
2π∆η2x

)1/2
2π~

[
kµu

µ τ(ηx)

cosh(Ω − ηx)
exp

(
− kµu

µ

Tf(ηx)

)]
ηx=ηsx

. (15)

Here, ηsx stands for the saddle-point, which is found to be proportional to
the rapidity y: ηsx ≈

y
2λ−1 . At midrapidity, the saddle-point vanishes and

the emission function can be well-approximated by a Gaussian centered on
zero. The width of this Gaussian is given by ∆ηx as

∆ηx ≈
√

Tf
mT

1√
λ(2λ− 1)

. (16)

At midrapidity, these considerations lead to the following longitudinal HBT
radius parameter:

RL = τf∆ηx ≈
τf√

λ (2λ− 1)

√
Tf
mT

. (17)

Surprisingly, this result is independent of the equation of state, and it is
formally different from the CNC estimate.

Our result thus presents an important step forward: once the parame-
ter λ of the acceleration is determined from the fits to the (pseudo)rapidity
distributions [2], this parameter combined with the longitudinal HBT radius
measurement can be used to provide an advanced estimate of the life-time
of the reaction, solving Eq. (17) for the life-time τf . The significance of our
advanced formula is illustrated in figure 2.
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Fig. 2. (Color online) The HBT radius RL(mT) (left) and 1/R2
L(mT) (right) of the

CKCJ solution are shown with solid red lines and compared to earlier estimations.
The parameters correspond to the fit results of the CKCJ solution to p+p collisions
at
√
s = 7 TeV [2].
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