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In the first part of this contribution, we show that the Lévy-stable shape
of the correlation function can be caused by averaging of the measured
correlation functions over a large number of events. In the second part, it
is demonstrated how a sample of events sorted by the Event Shape Sorting
technique exhibits different azimuthal dependence of correlation radii in
each event class.
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1. Motivation

It is widely understood that in the experiments with relativistic nuclear
collisions, each event evolves differently from the others. This is true even if
carefully selected centrality classes are studied. Event-by-event fluctuations
of the hadron distributions and its anisotropies, parametrised through the
coefficients vn, demonstrate it clearly.

In spite of that, in femtoscopic studies, source sizes averaged over a very
large number of events are always extracted and no attention is paid to their
fluctuations. The impact of the fluctuations on the resulting event-averaged
correlation function have recently been investigated in [1].

In this short contribution, we want to make two points : (i) The aver-
aging over a large number of different sources influences the shape of the
correlation function and may result in a shape given by the Lévy-stable dis-
tribution. (ii) The fluctuations of sizes and the space-time characteristics of
the sources can be accessed through the Event Shape Sorting technique [2].
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2. Lévy-stable distribution from averaging over events

The measured correlation function is often non-Gaussian and fitted with
the Lévy-stable distribution

C(q)− 1 = λ exp (−|Rq|α) , (1)

where q is momentum difference of the pair and R, α, and λ are fit param-
eters. It has been pointed out already in [3] that such a shape may result
from summing up production from sources with certain distribution of sizes.
We recall that even on a single event, we have effectively many sources with
different sizes, since each pair of bosons measures the size of the homogene-
ity region specified by its momentum. The averaging is on the level of the
correlation function.

We demonstrate this with two examples. First, let us assume a simple
toy-model source, which is given in transverse plane by two-dimensional
Gaussian profile with sizes R1 and R2. Its axes are rotated with respect to
the Cartesian x, y system by the angle θ2. The correlation function from
such a source is calculated the usual way

C(q)− 1 =

∣∣∫ d4xS(x)eiqx
∣∣2(∫

d4xS(x)
)2 .

Such a correlation function will be Gaussian. To represent the averaging
over sources which have different sizes and are differently oriented, we then
integrate over correlation functions which resulted from all the different Rs.
They have been distributed like the two sizes of the overlapping region ac-
cording to the optical Glauber model, and the rotation angle θ2 is distributed
uniformly. The resulting correlation function is no longer Gaussian. In Fig. 1
(left), we show its cut along the outward (or x) direction. We see that just
from such a simple averaging, we obtain a correlation function which is best
reproduced by the index parameter about α = 1.70.

In our second example, we use a source given by the blast-wave model.
This version of the blast-wave model is extended to describe transverse
anisotropies to an arbitrary order [4], although here we will only go up
to the second order. The important feature of the model is that it incorpo-
rates the anisotropies of the transverse size of the fireball R(ϕ) and also the
anisotropies of the transverse flow, with the help of the flow rapidity in the
transverse direction ρ(r, ϕ)

R(ϕ) = R0

(
1−

∞∑
n=2

an cos (n(ϕ− ϕn))

)
, (2)

ρ(r, ϕ) =
r

R(ϕ)
ρ0

(
1 +

∞∑
n=2

2ρn cos (n(ϕ− ϕn))

)
. (3)
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Fig. 1. The shapes of the correlation function as resulting from averaging over
source sizes and orientations. Solid black line is the calculated correlation function,
dashed red line is the best fit with distribution (1) with the parameter α indicated
in the figure, and dotted blue line is the best fit with Gaussian distribution.

We have calculated the dependence of the correlation function on qout and
qside from this model with T = 120 MeV, R0 = 7 fm, ρ0 = 0.8 and the
anisotropy parameters are a2 = ρ2 = 0.2. The cut through the correlation
function along the qout axis is shown in Fig. 1 (right). While the best fit
function belongs to family (1), it is no longer a Lévy-stable distribution,
which is limited to α < 2.

We summarise this section with the conclusion that the averaging over
many different sources in the determination of the measurable correlation
function may profoundly influence the actual shape of the correlation func-
tion.

3. Event Shape Sorting and femtoscopy

The recently proposed method of Event Shape Sorting (ESS) [2] may ac-
tually help to select events more selectively and avoid some of the averaging.
The algorithm sorts the events in such a way that events with similar az-
imuthal distribution of hadrons end up close together. They may be assumed
to have undergone similar fireball evolution. Except for femtoscopic studies,
such an event selection may be interesting also for studies of jet quenching,
since it may select events according to the actual azimuthal shape of the
fireball which is relevant for the path length of the leading parton.

3.1. The difference to Event Shape Engineering

A treatment similar in its spirit is known under the name Event Shape
Engineering (ESE) [5]. Let us explain the difference between ESE and ESS.
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In Fig. 2, we show twelve shapes for which the radius follows the prescription:

R(φ) = R0 (1 + 2v2 cos(2φ) + 2v3 cos(3(φ− Ψ23))) . (4)

In ESE, one first selects the selection variable and then picks events with
either highest or lowest values of that variable. Here, if e.g. that variable was
v2, then in one group, one would have shapes from the first and the third
column and, in the other group, the remaining shapes. It is questionable if
this is the natural way of grouping shapes. On the other hand, Fig. 3 shows
average histograms of ESS-sorted events. We clearly see that the sorting
respects the richer structure of the events, including both second and third
order oscillations.
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Fig. 2. Shapes with different azimuthal anisotropies drawn according to Eq. (4).
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Fig. 3. Histograms in azimuthal angle of ESS-sorted events generated by DRAGON.
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3.2. Femtoscopy studies with Event Shape Sorting

We have sorted 150 000 events generated by DRAGON [6], which is an
MC blast-wave generator with included resonances. It has been augmented
to include azimuthal anisotropy according to Eqs. (2) and (3). The scatter
plots in Fig. 4 show the v2 and v3 as they depend on the sorting variable µ
(see [2]). The sorting goes dominantly according to v2, but in classes 8–10,
we observe an admixture of the third order anisotropy, as well.
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Fig. 4. (Colours on-line) Coefficients v2 (left) and v3 (right) of individual events
as depending on the sorting variable µ. Different shades of grey/colours represent
different event classes.

This picture is complemented by the azimuthal dependence of the cor-
relation radii, which has been constructed for each event class separately. It
is shown in Fig. 5. The third order component in the azimuthal dependence
of the correlation radii is best seen in event classes 6, 9, and 10.
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Fig. 5. The azimuthal dependence of Rout and Rside from all event classes.
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Note that in experimental analyses so far, one could only look at each
oder of the oscillation separately. If all events were azimuthally rotated with
respect to nth order event plane (n = 2 or 3), then only the nth order oscil-
lation can be seen and the other order is averaged out. The ESS technique
thus offers the unique opportunity to observe all orders together at once.

4. Conclusions

Averaging over a large number of events has an impact on the shape of
the correlation function. We showed that it can cast the correlation function
into a shape of a Lévy-stable distribution. It remains to be seen to what
extent the present observations [7, 8] can be described by such averaging.

The analysis could be made more exclusive and less influenced by aver-
aging with the help of the Event Shape Sorting technique. We have demon-
strated here that the sorted classes differ also by the azimuthal dependence
of the correlation radii.

Note finally that we have made the sorting algorithm [2] available [9].
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