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A known exact and accelerating solution of relativistic hydrodynamics
for perfect fluids is utilized to describe pseudorapidity densities of \/syn =
5.02 TeV Pb+Pb and /s = 13 TeV p+p collisions at the LHC. We evaluate
a conjectured initial-energy densities €.o., in these collisions, and compare
them to Bjorken’s initial-energy density estimates, and to results for Pb+Pb
collisions at /syn = 2.76 TeV and p+p collisions at /s = 7 and 8 TeV.
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1. Introduction

Relativistic hydrodynamics is an efficient theoretical framework to study
the properties of strongly interacting Quark—Gluon Plasma (sQGP) pro-
duced in relativistic heavy-ion collisions [1, 2]. Both analytical and numerical
results of hydrodynamics highlighted important details of the time evolution
of sSQGP [3-12] as reviewed in Ref. [13]. A brief review on the successful
applications of exact analytic solutions of relativistic hydrodynamics to de-
scribe the evolution of longitudinal phase-space in high-energy collisions was
recently given in Section 2 of Ref. [14].

In recent publications [14-16], the pseudorapidity distributions of var-
ious colliding systems were analyzed to study the longitudinal expansion
dynamics at the RHIC and LHC energies. These works were based on an
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accelerating and explicit, but rather academic family of exact solutions of
relativistic hydrodynamics, as found by Csorgd, Nagy, and Csanad (CNC) in
Refs. |9, 10]. Given that the selected CNC solutions were 1-+1 dimensional,
the transverse momentum distributions were phenomenologically modeled
utilizing also the 143 dimensional Buda—Lund hydro-model [7|. The ini-
tial thermodynamic quantities for \/syn = 200 GeV Cu+Cu, /sy = 130
and 200 GeV Au+Au, \/syy = 2.76 TeV Pb+Pb, and /s = 7 and 8 TeV
p+p collisions at the RHIC and LHC energies were estimated and published
recently in Refs. [15, 16], so we do not detail them here, due to space limi-
tations. Instead, we present new results for the pseudorapidity distributions
and for the initial-energy densities at top LHC energies, for Pb+Pb collisions
at \/syy = 5.02 TeV and p+p collisions at /s = 13 TeV.

2. Accelerating hydrodynamics and initial-energy densities

The dynamical equations of relativistic perfect fluid hydrodynamics cor-
respond to the local conservation entropy and four-momentum

Ou(out) = 0, (1)
0,T" = 0, (2)

where the entropy density is denoted by o, the four velocity field by u*,
the energy density by €, the pressure by p and the energy-momentum four-
tensor of perfect fluids is TH = (e 4+ p)utu” — pg"”. The equation of state,
€ = Kp, closes the above set of dynamical equations. For the case of vanishing
baryochemical potential ug = 0, the fundamental thermodynamical relation
€ +p = To can also be utilized to solve these equations and, here, we also
assume that x = 1/c2 # k(T), so the speed of sound ¢ is modeled with
a temperature T-independent, average value. An accelerating but rather
academic family of exact solutions was detailed in Refs. [9, 10]

u? = (cosh(An,),sinh(An,)), (3)
AL

P = po (%) : (4)

where the longitudinal proper time is denoted by 7 = \/t2 — 2, the space-
time rapidity is denoted by 7, = 0.5log [(t + 7.)/(t — )] and, here, we limit
the discussion only to 1+1 dimensional solutions with z# = (¢,r,) and u* =
(u®, u') that correspond to one of the five different classes of solutions that
were detailed in Refs. [9, 10]. In these solutions, the longitudinal acceleration
parameter is a free fit parameter, denoted by A and the initial values for the
pressure and thermalization time are denoted by pg and 7y, respectively. The
price for the freedom in A was a fixed value of super-hard equation of state,
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k = 1. Combining the exact solution of relativistic hydrodynamics with a
Cooper—Frye flux term, and embedding this solution to 1+3 dimensions with
xt = (t,ry, 1y, 72) and p* = (E, pg, py, p-), the rapidity distribution dn/dy
was obtained in a saddle-point approximation as [9, 10]

jZ = ;h; o cosh™ 271 (%) exp {—;: {COSha <%) - 1}} ) (5)
221

where o = 5=, the freeze-out temperature is denoted by T, the mass
of particles is m and the rapidity of the observed particles is denoted by

y = 0.5log((E + p,)/(E — p,)). The constant of normalization % is

=0
proportional to S| that stands for the transverse cross section of the yﬂuid.
The pseudorapidity density distribution j—z, with the help of an advanced
saddle-point integration is given [7, 9] as a parametric curve (n(y), g—’;(y)),
where the parameter is the rapidity y

(0 Gw) = Ges B v ] B ) ©

where A(y) denotes the rapidity-dependent average value of the variable A
including the various components of the four-momentum, and the Jacobian
connecting the double differential (y, my) and (5, m7) distributions has
been utilized at the average value of the transverse momentum [9]. Based
on the Buda-Lund hydrodynamic model [7], in the region of pp < 2 GeV,
the relation between mean transverse momentum pr and the effective tem-
perature T.g at a given rapidity y can be written as

_ Tesr
) = — )
1+ TT(y - ymid)

where o1 parameterizes the rapidity dependence of the average transverse
momentum. In our case, o and T are free fit parameters. Their values can
be determined either from fits to data on the rapidity-dependent transverse
momentum spectra, or phenomenologically as in Ref. |7] or dynamically as
in Ref. [14]. Midrapidity is denoted by ymiq. In our case, it is at ymiq = 0.
Our fit results to pseudorapidity densities allow for advanced estimates
of the initial-energy densities. The Bjorken-estimate [5] at midrapidity is

1 dBr_ (Bn)dn
- Simo dp Simody’

EBJ'

(®)
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In the case of a longitudinally accelerating flow, the acceleration effects mod-
ify Bjorken’s estimate. A conjectured initial-energy density €corr [15, 16] that
corrects Bjorken’s estimate for acceleration effects reads as

o = (A1) <Tf)H <Tf)“_1)(1_’1‘) ;. )

70 70

This estimate explicitely takes into account the bending of the fluid world-
lines due to acceleration. However, it is based on results that are obtained
exactly in the kK = 1 case only. Until most recently, the dependence of the
initial-energy density on the speed of sound ¢ = 1/4/k had not been derived
exactly, only a conjecture was known so far. Given that the speed of sound is
an important physical property of the sQGP, it is crucial to cross-check and
derive exact results for realistic values of the speed of sound, corresponding
to ¢ ~ 0.1. However, let us emphasize that this conjecture, Eq. (9), is
based on the determination of the acceleration parameter \ from fits to
the measured pseudorapidity density distributions. The dependence of the
initial-energy density on the initial and freeze-out proper-times, 79 and ¢,
is a topic of ongoing research, with first results presented in Refs. [19, 20].

3. Results

Measurements of the charged particle pseudorapidity distribution dn/dn
for \/syn = 5.02 TeV Pb+Pb collisions and /s = 13 TeV p-+p collisions were
presented by the ALICE [17] and CMS collaborations [18|. Here, we extract
the acceleration parameter \ of these collisions and apply it to calculate the
energy density correction ratio €copr/ eg;j as a function of 7¢ /70. Fit results
to the ALICE and CMS data are shown in Figs. 1 and 2. Our advanced
estimates of the initial-energy densities €.orr are given in Tables I and II for
the squared speed of sound ¢? = 0.1 and 7¢/79 = 6 + 2.

TABLE I

Acceleration parameters and initial-energy density estimations for 2.76 [16] and
5.02 TeV 0-5% centrality Pb+Pb data [17]. Auxiliary values of Tt = 90 MeV,
Teg = 0.27 £0.03 GeV, m = 0.24 GeV, o1 = 0.9 £ 0.1 have been used based on
Refs. [7, 15, 16].

\/g ((ii% A €B;j [GeV/leB] €corr [GeV/me]
=10

276 TeV  1615+39 1.050£0.005 12.50+£0.44 15.07 £ 0.81
5.02 TeV 19294+46 1.046£0.013  14.85+0.53 17.40 £ 0.61
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Fig.1. (Color online) The left panel shows hydrodynamical fits using Eqgs. (5)—(7)
to dnen/dn data as measured by the ALICE Collaboration in \/syny = 5.02 TeV
Pb+PDb collisions. The right panel indicates with solid curves the €corr/ €Bj COITeC-
tion factor, as a function of the ratio of freeze-out time and thermalization time
7¢ /7o, for the centrality class of 0-5%, both for the exact solution with x = 1 super-
hard equation of state, and for the conjectured energy density values for the realistic
k = 10 soft equation of state, while the dashed lines represent the uncertainty of
these estimates as determined from the errors of the fit parameters.
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Fig.2. The same as Fig. 1, but for p+p collisions at /s = 13 TeV.

TABLE II

Acceleration parameters and initial-energy density estimations for /s = 7, 8 [15]
and 13 TeV p+p data [18]. Auxiliary values of Ty = Teg = 0.17 £+ 0.01 GeV,
m = 0.14 GeV, op = 0.81 £ 0.04 have been utilized, based on Refs. [7, 15, 16].

NG 3—’; A epj [GeV/fm?|  €corr [GeV/fm3|
=10
7TeV 5784+0.01 1.073+0.001 0.51 +0.01 0.64 +0.01
8 TeV 5.36+0.02 1.067 £ 0.001 0.52 +£0.01 0.64 +0.01

13 TeV  6.50£0.02 1.065 £ 0.013 0.56 = 0.02 0.69 = 0.02
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4. Summary and conclusions

We have evaluated the conjectured initial-energy densities €cor in p+p
and in Pb+Pb collisions at the currently available highest LHC energies,
and compared them to Bjorken’s initial-energy density estimates as well
as to earlier results for Pb+Pb collisions at /syy = 2.76 TeV and p+p
collisions at /s = 7 and 8 TeV. Our new results are similar to our recent
results published in Ref. [14]. Our results were found to be not inconsistent
— neither in proton—proton nor in heavy-ion reactions — with longitudinal
expansion dynamics of hydrodynamical origin.
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