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We briefly review our works on ultraperipheral heavy-ion collisions. We
discuss both γγ and rescattering of hadronic photon fluctuation induced by
one nucleus in the collision partner. Production of one and two leptonic
and pionic, and pp̄ pairs is discussed as an example of photon–photon pro-
cesses. The production of single vector mesons (ρ0 or J/ψ) is an example
of the second category. The double-scattering mechanisms of two ρ0 meson
production is discussed in addition.
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1. Introduction

The ultraperipheral collisions is a class of processes that were studied
experimentally only recently at RHIC and the LHC. The processes can be
viewed as a scattering of two clouds of photons or a process of scattering of
a photon (or photon hadronic fluctuations) emitted by one nucleus on the
second colliding nucleus. In general, one is interested rather in processes
with small particle multiplicity which automatically means that the impact
parameter is greater than the sum of the radii of colliding nuclei. Some of
such processes were suggested long ago [1]. Only recently, some experimental
results were presented. In the following, we will present some results. In
addition, we will show some other processes that could be also studied at
the LHC.
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A schematic view of the photon-induced processes is shown in Fig. 1
and the situation in the impact parameter space is illustrated in Fig. 2.
When calculating the cross section in the equivalent photon approximation
in the impact parameter space, ultraperipheral collisions mean that the two
circles, representing heavy ions, do not overlap (b > RA + RB) [1]. It does
not mean, however, that the processes of photoproduction disapear in such
a case. In this case, they may also contribute and compete with other
procesess characteristic for standard (b < RA + RB) heavy-ion collisions.
The situation/physics then strongly depends on the reaction.
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Fig. 1. A schematic view of the γγ induced processes.
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Fig. 2. The situation in the impact parameter space.

Our detailed studies were presented in Refs. [2–16]. In this paper, we
discuss different processes except light-by-light processes that were discussed
in [17]. Here, we only sketch some selected results.
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2. A brief review of our results for UPC

We start presentation of our results for dilepton production. In Fig. 3,
we present our results for dielectron invariant mass together with the ALICE
experimental data [18]. Good agreement is achieved without free parame-
ters.
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Fig. 3. Dielectron invariant mass for the PbPb → PbPb e+e− for the ALICE
experimental cuts [18].

In Fig. 4, we present our results together with the ATLAS data [19] for
the Pb+Pb→ Pb+Pb+µ+ + µ− reaction. Experimental cuts were included
in our calculations. In contrast to the PbPb → PbPb e+e− reaction, the
agreement here is much worse.
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Fig. 4. Cross section for dimuon production in UPC of Pb+Pb together with the
ATLAS experimental data [19].
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Let us now briefly discuss production of charged pion pairs. In Fig. 5,
we demonstrate how well our multicomponent model [5] describes the ele-
mentary cross sections for γγ → π+π− and γγ → π0π0 measured in detail
by different experiments [5]. These elementary cross sections can be used in
calculation of the cross section for nuclear processes AA→ AAππ.

 [GeV]π π = Mγ γW
0 1 2 3 4 5 6

) 
[n

b
]


π 

+
π 

→ 
γ 

γ(
σ

210

110

1

10

210

3
10

ALEPH

Belle

CELLO

CLEO

Two Gamma

Mark II

VENUS

2
=4 GeVπγB

2
=6 GeVπγB

 [GeV]π π = Mγ γW
0 1 2 3 4 5 6

) 
[n

b
]

0
π 

0
π 

→ 
γ 

γ(
σ

210

110

1

10

210

3
10

Crystal Ball

Bellee
xc

hange

ρ+

sum

Fig. 5. Energy dependence of the elementary cross sections for γγ → ππ reactions.

There is a strong competition in the π+π− channel of coherent ρ0 meson
production (see Fig. 6) which decays into a π+π− pair. The main mechanism
is photon fluctuation into virtual ρ0 meson and its multiple rescattering
in the collision partner. In Fig. 7, we show invariant mass distribution
of the π+π− system. Both ρ0 contribution with effective inclusion of the
photoproduction continum, called sometimes Söding mechanism, and the
γγ mechanism were considered. The γγ mechanism becomes sizeable in the
region of the f2(1270) dipion resonance and its presence improves agreement
with the ALICE experimental data [20].
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Fig. 6. Mechanism of coherent ρ0 production.

The cross section for coherent single ρ0 production is very large. There-
fore, one could consider also double-scattering cross section for production
of ρ0ρ0 pairs. The underlying mechanisms are sketched in Fig. 8.
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Fig. 7. Dipion invariant mass together with the ALICE experimental data [20].
The ρ0 → π+π− and γγ → π+π− contributions are shown separately.
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Fig. 8. The mechanisms of double ρ0 production.

In Fig. 9, we show distribution in four-pion invariant mass for
√
sNN =

200 GeV together with the STAR data [21]. We show the γγ → ρ0ρ0 and
double-scattering contributions. Clearly, the double scattering contribution
is larger than the γγ one but insufficient to understand the STAR data [21].
Is the disagreement due to coherent production of ρ′ or ρ′′ mesons? This is
not clear at the moment and requires further studies in the future.

In Fig. 10, we show our predictions for four-pion invariant mass, includ-
ing only double-scattering mechanism for

√
sNN = 2.76 TeV. The resulting

distribution strongly depends on the range of rapidity. A longer range is
preferred when one wants to enhance the double-scattering contribution.
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Fig. 9. Color online)Four-pion invariant mass distribution calculated by us together
with the STAR experimental data [21]. The contribution of the double scattering
mechanism is shown by the solid blue line. In addition, we show contribution of sin-
gle scattering based on γγ → ρ0ρ0 subprocess subdivided into two subcontributions
described in [4].
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Fig. 10. Four-pion invariant mass at the LHC for different ranges of pion pseudo-
rapidity.

Another interesting process is AA→ AApp̄. The continuum subprocess
is shown, for example, in Fig. 11. In our studies, we included also some
resonances [11]. In Fig. 12, we show our predictions for Mpp̄ and rapidity
distributions for PbPb→PbPb pp̄ process at

√
sNN = 5.02 TeV. Predicted

cross sections for PbPb→PbPb pp̄ for different experimental cuts are given
in Table I.
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Fig. 11. Elementary processes γγ → pp̄ responsible for production of pp̄ pairs in
UPC of heavy ions.
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Fig. 12. Examples of differential cross sections for the PbPb→PbPb pp̄ reaction.

TABLE I

Experiment Cuts σ [µb]

ALICE pt,p > 0.2 GeV, |yp| < 0.9 100
ATLAS pt,p > 0.5 GeV, |yp| < 2.5 160
CMS pt,p > 0.2 GeV, |yp| < 2.5 500
LHCb pt,p > 0.2 GeV, 2 < yp < 4.5 104

Double scattering UPC are possible also for production of two lepton
pairs as shown in Fig. 13. The cross section integrated over phase space is
shown in Fig. 14 for two different cuts on lepton transverse momenta (the
same for each lepton).

The number of counts for integrated luminosity Lint = 1 nb−1 is given in
Table II. The table shows that some measurements of four leptons are possi-
ble. Certainly, such a test of our predictions of double scattering mechanism
would be new and valuable.

Many of the processes discussed here survive also to the situation when
the nuclei collide and when centrality of the collision can be determined. A
first example was discussed for photoproduction of J/ψ quarkonium in [12].
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Fig. 13. Double scattering production mechanism of two lepton pairs.
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Fig. 14. Phase-space integrated cross section for e+e−e+e− and e+e− production
for two different cuts on lepton transverse momenta.

TABLE II

(4µ),
√
sNN = 5.02 TeV (4e),

√
sNN = 5.5 TeV

Experimental cuts N Experimental cuts N

|yi| < 2.5, pt > 0.5 GeV 815 |yi| < 2.5, pt > 0.5 GeV 235
|yi| < 2.5, pt > 1.0 GeV 53 |yi| < 2.5, pt > 1.0 GeV 10
|yi| < 0.9, pt > 0.5 GeV 31 |yi| < 1.0, pt > 0.2 GeV 649
|yi| < 0.9, pt > 1.0 GeV 2 |yi| < 1.0, pt > 1.0 GeV 1
|yi| < 2.4, pt > 4.0 GeV �1

In Fig. 15, we show the cross section for different bins of centrality. Rather
good description of the data was achieved by imposing special conditions on
photon fluxes [12].

Another example is the AA→ e+e− peripheral and semicentral nucleus–
nucleus collisions for small dilepton transverse momenta discussed very re-
cently [16]. The photoproduction mechanism is particularly important for
small dielectron transverse momenta and not too small energies where it
competes with thermal dielectron production.
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Fig. 15. Dependence of the cross section for creation of the J/ψ meson as a function
of meson centrality together with the ALICE experimental data [22].
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