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Recently introduced equilibrium Wigner functions for spin-1/2 particles
are used in the semiclassical kinetic equations to study the relation be-
tween spin polarization and vorticity. It is found, in particular, that such a
framework does not necessarily imply that the thermal-vorticity and spin
polarization tensors are equal. Subsequently, a procedure to formulate the
hydrodynamic framework for particles with spin-1/2, based on the semiclas-
sical expansion, is outlined.

DOI:10.5506/APhysPolBSupp.12.393

1. Introduction

Fireballs of strongly interacting matter formed in non-central heavy-
ion collisions carry very large global angular momentum [1] which may in-
duce spin polarization similar to magnetomechanical effects of Einstein and
de Haas [2], and Barnett [3]. Therefore, the first positive measurements of
Λ–hyperon spin polarization [4, 5] in heavy-ion collisions brought about a
widespread interest in theoretical studies related to spin polarization and
vorticity. A natural framework that can deal simultaneously with polariza-
tion and vorticity is hydrodynamics with spin. Its relativistic variant has
been recently proposed in Refs. [6, 7], see also [8].

In this proceedings contribution, we report on our recent work [9], where
we performed a critical comparison of the thermodynamic and kinetic ap-
proaches which deal with spin polarization and vorticity. Thermodynamic
approach refers to the general properties of matter in global equilibrium with
a rigid rotation [10–16], whereas the kinetic approach relies on the study of
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kinetic equations (with the vanishing collision term) for the Wigner func-
tions of spin-1/2 particles, discussed recently in Refs. [17–20]. We also outline
herein the procedures to construct hydrodynamics with spin.

2. Global and local equilibrium

For spinless particles, the phase-space distribution function f(x, p) sat-
isfies the Boltzmann equation of the form of

pµ∂µf(x, p) = C[f(x, p)] , (1)

where C[f ] is the collision integral. The latter vanishes for free streaming
particles and in global or local equilibrium. In the global thermodynamic
equilibrium, the equation pµ∂µfeq = 0 is satisfied exactly leading to the
following conditions for the hydrodynamic parameters ξ = µ/T and βµ =
uµ/T appearing in the definition of feq: ∂µξ = 0 and ∂µβν + ∂νβµ = 0. The
last formula is known as the Killing equation. It has the solution of the
form of βµ = β0µ+$0

µνx
ν , where the vector β0µ and the antisymmetric tensor

$0
µν are constants. For any form of the βµ field, thermal vorticity is defined

as $µν = −1
2 (∂µβν − ∂νβµ). In global equilibrium, $µν = $0

µν , hence the
thermal vorticity in global equilibrium is constant. In local equilibrium,
the equation pµ∂µfeq(x, p) = 0 is not satisfied exactly. This is so because
in this case, a correction δf should be added to the equilibrium function
feq in order to describe dissipative effects. Nevertheless, the hydrodynamic
parameters may be constrained by taking specific moments of Eq. (1). They
are constructed to yield the conservation laws for charge, energy, and linear
momentum.

Treatment of particles with spin involves the Wigner functionsW±
eq(x, k)

which depend additionally on the antisymmetric spin polarization tensor
ωµν [21]. This means that we may distinguish between four rather than two
different types of equilibria: (1) global equilibrium — where βµ is a Killing
vector, $µν = ωµν = −1

2 (∂µβν − ∂νβµ) = const, ξ = const, (2) extended
global equilibrium — βµ is a Killing vector, $µν 6= ωµν = const, ξ = const,
(3) local equilibrium — βµ field is not a Killing vector but ωµν(x) = $µν(x)
and ξ = ξ(x) and, finally (4) extended local equilibrium — βµ field is not
a Killing vector, ωµν(x) 6= $µν(x), and ξ = ξ(x). Similarly to the spinless
case, the global and extended global equilibrium states correspond to the
case whereWeq(x, k) satisfies exactly the collisionless kinetic equation, while
the local and extended local equilibrium states correspond to the case where
only certain moments of the kinetic equation for Weq(x, k) can be set equal
to zero, which results in the perfect-fluid hydrodynamics with spin.
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3. Equilibrium Wigner functions

Our considerations are based on the relations between the Wigner func-
tions and the phase-space-dependent spin density matrices f±rs(x, p) intro-
duced by de Groot, van Leeuwen, and van Weert (GLW) in Ref. [22] (here,
“+” stands for particles and “−” for antiparticles). For any of the equilibrium
states defined above, we use the expressions from Ref. [10]

f+rs(x, p) =
1

2m
ūr(p)X

+us(p) , f−rs(x, p) = − 1

2m
v̄s(p)X

−vr(p) . (2)

Here, m denotes the particle mass, while ur(p) and vr(p) are the Dirac
bispinors with spin indices r and s running from 1 to 2. The matrices
X± are defined by the formula X± = exp[±ξ − βµp

µ]M±, with M± =

exp[±1
2ωµν(x)Σµν ] and Σµν = i

4 [γµ, γν ] being the Dirac spin operator. Fol-
lowing Refs. [6, 7], we assume herein that the spin polarization tensor sat-
isfies the conditions ωµνωµν ≥ 0 and ωµν ω̃µν = 0, where ω̃µν = 1

2εµναβω
αβ .

In this case, M± = cosh(ζ) ± sinh(ζ)
2ζ ωµνΣ

µν with ζ = 1
2

√
1
2ωµνω

µν . The
parameter ζ can be interpreted as the ratio of the spin chemical potential Ω
and the temperature T , namely ζ = Ω/T [6].

Wigner functions are 4 × 4 matrices that can be always decomposed
in terms of the 16 independent generators of the Clifford algebra. In the
equilibrium cases discussed in this section,

W±
eq =

1

4

[
F±
eq + iγ5P±

eq + γµV±eq,µ + γ5γ
µA±

eq,µ +ΣµνS±eq,µν
]
. (3)

The total Wigner function is the sum Weq(x, k) = W+
eq(x, k) +W−

eq(x, k).
The coefficient functions appearing in the expansion of the equilibrium
Wigner function can be obtained from the traces of W±

eq(x, k) contracted
first with the appropriate gamma matrices, for explicit formulas, see Ref. [9].

4. Semi-classical expansion and kinetic equations

For an arbitrary Wigner function W, its spinor decomposition has the
form analogous to Eq. (3) with the corresponding coefficient functions F ,
P, Vµ, Aµ, and Sµν . In the (extended) global equilibrium, the function W
should satisfy exactly the equation [23, 24]

(γµK
µ −m)W(x, k) = 0 , Kµ = kµ +

i~
2
∂µ . (4)

In this way, one obtains the constraints on hydrodynamic variables µ, T , uµ
and ωµν . The solution of Eq. (4) can be written in the form of a series in ~

X = X (0) + ~X (1) + ~2X (2) + . . . , X ∈ {F ,P,Vµ,Aµ,Sµν} . (5)
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Including the zeroth and first orders terms of the ~ expansion, one finds the
following equations for the coefficients functions F(0) and Aν(0) [23, 24]:

kµ∂µF(0)(x, k) = 0 , kµ∂µAν(0)(x, k) = 0 , kν Aν(0)(x, k) = 0 . (6)

The other coefficients functions X (0) can be expressed in terms of F(0) and
Aν(0). It turns out that such algebraic relations are obeyed by the equilibrium
coefficients Xeq, hence we may assume that X (0) = Xeq. Using Feq(x, k) and
Aνeq(x, k) in Eqs. (6), we can check that they are exactly fulfilled if βµ is the
Killing vector, while the parameters ξ and ωµν are constant, although $µν

may be different from ωµν . This situation corresponds, in general, to the
case of extended global equilibrium defined above.

5. Formulation of hydrodynamics with spin

Let us now turn to the discussion of the conserved currents. We include
them up to the first order in ~ 1. The charge current Nα(x) can be expressed
in terms of the Wigner function as the following integral [22]:

Nα = tr

∫
d4k γαW =

∫
d4k Vα . (7)

One finds that Nα
eq = Nα

eq + δNα
eq and ∂α δNα

eq = 0. Thus, the conservation
law for the charge current can be expressed by the equation ∂αNα

eq(x) = 0,
where the charge current Nα

eq(x) agrees with that obtained in Ref. [6].
In the GLW formulation [22], the energy-momentum and spin tensors

are expressed as

TµνGLW =
1

m
tr

∫
d4k kµ kνW =

1

m

∫
d4k kµ kνF , (8)

Sλ,µνGLW =
~
4

∫
d4k tr

[({
σµν , γλ

}
+

2i

m

(
γ[µkν]γλ − γλγ[µkν]

))
W
]
. (9)

Carrying out the momentum integral in Eq. (8), we reproduce the perfect-
fluid formula for the GLW energy-momentum tensor derived earlier in
Ref. [6]. It should obey the conservation law ∂αT

αβ
GLW(x) = 0. If the

energy-momentum tensor is symmetric, the conservation of orbital and spin
parts of the total angular momentum holds separately, so we also have
∂λS

λ,µν
GLW(x) = 0.

1 We assume that F(1) = 0 and Aν
(1) = 0, however, we include the first order corrections

generated by using F(0) and Aν
(0) in the kinetic equation (4).
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The canonical forms of the energy-momentum and spin tensors, Tµνcan(x)

and Sλ,µνcan (x), can be obtained from the Dirac Lagrangian by applying the
Noether theorem and are given by the formulas

Tµνcan =

∫
d4k kνVµ , (10)

Sλ,µνcan =
~
4

∫
d4k tr

[{
σµν , γλ

}
W
]

=
~
2
εκλµν

∫
d4kAκ . (11)

One can check that Tµνcan = TµνGLW + δTµνcan, where δTµνcan = −∂λSν,λµGLW. The
canonical energy-momentum tensor should be conserved as well, hence, we
demand that ∂αT

αβ
can(x) = 0. Since Sν,λµGLW(x) is antisymmetric in the indices

λ and µ, we find that ∂µ δT
µν
can(x) = 0. Thus, the conservation law for energy

and momentum in the canonical case is reduced to the same formula as that
obtained in the GLW case.

The canonical equilibrium spin tensor can be obtained by considering
the axial–vector component in Eq. (11) in the zeroth order. Assuming
A(0)
κ = Aeq,κ and carrying out the integration over k, one gets Sλ,µνcan =

Sλ,µνGLW + Sµ,νλGLW + Sν,λµGLW. One can show that ∂λS
λ,µν
can (x) = T νµcan − Tµνcan. This

is an interesting result as one can see that the energy-momentum tensor is
not symmetric in the canonical case. It is important to note that the two
approaches (GLW and canonical) are connected via a pseudo-gauge trans-
formation [9].

Conservation laws for charge, energy, and momentum can be obtained
by taking the zeroth and first moments of the kinetic equation kµ∂µF(0) = 0.
Since we have an additional degree of freedom connected with spin polar-
ization, the equations for charge and energy-momentum are not closed. In
order to close them, one needs to determine the dynamics of spin which can
be obtained by multiplying the kinetic equation for the axial coefficient of
the Wigner function (6) by a factor εµβγδkβ and then by integrating over k.
In this way, we obtain the conservation of the GLW version of the spin
tensor.

6. Summary and conclusions

We have introduced the Wigner functions using the equilibrium distri-
bution functions of particles with spin-1/2 put forward in Ref. [10]. Using
kinetic equations for the Wigner function, we have found that the kinetic
approach does not necessarily imply a direct relation between the thermal
vorticity and spin polarization, except for the fact that the two should be
constant in global equilibrium. We have furthermore outlined the procedure
to construct the hydrodynamic equations with spin.
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