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We briefly review the foundations of a new relativistic fluid dynamics
framework for polarized systems of particles with the spin one half. Using
this approach, we numerically study the dynamics of the spin polarization
of a rotating medium resembling the ones created in high-energy heavy-ion
collisions.
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1. Introduction

Very recently, the STAR Collaboration [1] made an intriguing observa-
tion of non-zero global spin polarization of Λ hyperons emitted from the
medium produced in high-energy heavy-ion collisions. This raised the ques-
tions concerning the relation between polarization and vorticity of matter
created in these processes. The coupling between the two arises in the global
equilibrium state of a rotating system [2, 3]. However, the most natural
framework for such studies is provided by relativistic hydrodynamics, which
forms the basis of our current understanding of heavy-ion collisions dynamics
[4, 5]. Recently, a new framework for relativistic perfect fluid hydrodynamics
of spin-polarized media was presented [6, 7] (see also Refs. [8, 9]), aiming at
an extension of the work of Refs. [2, 3] to systems in local equilibrium. In
this contribution, we review the framework proposed in Refs. [6–9] and use
it for numerical studies of polarization dynamics in heavy-ion collisions.
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2. Evolution equations for spin-polarized fluids

In Refs. [6, 7], a fluid dynamical framework for polarized systems of
spin-1/2 particles and antiparticles was proposed. It is based on conser-
vation laws of baryon charge, energy, linear momentum and total angular
momentum

∂αN
α = 0 , (1)

∂αT
αβ = 0 , (2)

∂αJ
α,βγ = 0 . (3)

Employing the kinetic-theory definitions of Ref. [10] together with the equi-
librium spin density matrices proposed in Ref. [3], one finds that the baryon
current Nα and the energy-momentum tensor Tαβ in Eqs. (1)–(2) have the
following perfect-fluid structure:

Nα = nuα , (4)
Tαβ = (ε+ P )uαuβ − Pgαβ , (5)

respectively, where gαβ = diag(+1,−1,−1,−1) is the metric tensor and uα
denotes the four-velocity of the fluid. In addition, one finds that the entropy
current, computed with the Boltzmann formula, takes the form of

Sα = suα . (6)

Rewriting the total angular momentum tensor Jα,βγ in Eq. (3) as a sum
of the orbital Lα,βγ = xβT γα − xγT βα and spin Sα,βγ parts and employing
Eqs. (2) and (5), one finds that the spin tensor is separately conserved,
∂αS

α,βγ = 0. Moreover, assuming that the latter has the form proposed in
Ref. [2], namely,

Sα,βγ =
wuα

4ζ
ωβγ , (7)

Eq. (3) takes the form of

˙̄ωµν = 0 . (8)

Herein, ωµν is the spin polarization tensor, which is antisymmetric and sat-
isfies the relation εαβγδωαβωγδ = 0, ω̄µν ≡ ωµν/(2ζ) is the normalized spin
polarization tensor with ζ ≡ 1

2
√
2

√
ωµνωµν being real, and ˙( ) ≡ u·∂ denotes

the comoving derivative.
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The thermodynamic quantities, namely, energy density, pressure, baryon
density, and spin density

ε = 4 cosh(ζ) cosh(ξ)ε(0)(T ) , P = 4 cosh(ζ) cosh(ξ)P(0)(T ) , (9)
n = 4 cosh(ζ) sinh(ξ)n(0)(T ) , w = 4 sinh(ζ) cosh(ξ)n(0)(T ) , (10)

respectively, satisfy the fundamental thermodynamic relation ε+P = sT +
µn + Ωw with s = 4 cosh(ζ) cosh(ξ)s(0)(T ) being the entropy density. The
quantities ξ ≡ µ/T and ζ ≡ Ω/T parametrize the baryon µ and the spin
Ω chemical potentials, and are, together with the temperature T , treated
as the independent thermodynamic variables entering the grand canonical
potential. The thermodynamic quantities of (9)–(10) are expressed in terms
of auxiliary ones describing a corresponding system of spin-0 particles

n(0)(T ) =
κ

2π2
T 3 m̂2K2 (m̂) ,

ε(0)(T ) =
κ

2π2
T 4 m̂2

[
3K2 (m̂) + m̂K1 (m̂)

]
,

P(0)(T ) = T n(0)(T ) ,

where s(0)(T ) = 1
T

[
ε(0)(T ) + P(0)(T )

]
, m̂ ≡ m/T and κ ≡ g/(2π)3, with g

denoting the number of internal degrees of freedom excluding spin.
It is instructive to study projections of Eq. (2). In particular, one finds

that the projection of the energy-momentum conservation law onto direc-
tions orthogonal to the fluid four-velocity leads to the relativistic Euler equa-
tions

(ε+ P )u̇µ = ∂µP − uµṖ , (11)

where θ ≡ ∂ ·u is the expansion scalar. On the other hand, projecting Eq. (2)
onto the fluid flow and using the differentials of the pressure P = P (T, µ,Ω)
yields

T∂µ(suµ) + µ∂µ(nuµ) +Ω ∂µ(wuµ) = 0 . (12)

Requiring entropy and baryon number conservation, which makes first and
second term in (12) vanish, leads to

∂µ(suµ) = ṡ+ s θ = 0 , (13)
∂µ(nuµ) = ṅ+ n θ = 0 , (14)
∂µ(wuµ) = ẇ + w θ = 0 . (15)

Equations (11), (13), (14) and (15) are six coupled partial differential equa-
tions which determine the dynamics of the space-time-dependent quantities
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µ(x), Ω(x) ≡ T
2
√
2

√
ωµνωµν , T (x) and uµ(x). On top of their evolution,

one has to solve Eq. (8) for the normalized components of the polarization
tensor.

In Refs. [6, 7], it was shown that Eqs. (11), (13), (14) and (15) have the
stationary vortex-like solution corresponding to a rotating global equilibrium
state [2, 3] with

uµ = γ
(

1,−Ω̃ y, Ω̃ x, 0
)
, (16)

T = T0γ, µ = µ0γ and Ω = Ω0γ, where γ = 1/
√

1− Ω̃2r2 is the Lorentz
factor, r =

√
x2 + y2 and T0, µ0, and Ω0 are arbitrary constants. The

corresponding non-trivial form of the polarization tensor is ωij = −ωji =

Ω̃/T0 = 2Ω0/T0 for i = x and j = y, and ωij = 0 otherwise. In the next
section, we study Eqs. (11), (13), (14), (15) and (8) in the case where the
equilibrium is achieved only locally.

3. Numerical results

In the following, we study numerically the solutions of the hydrody-
namic equations presented above for a rotating spin-polarized medium,
which resembles the systems created in the low-energy heavy-ion collisions.
It is modelled by a Gaussian source Ti = T0 g(x, y, z), where g(x, y, z) =

exp
(
− x2

2σ2
x
− y2

2σ2
y
− z2

2σ2
z

)
. The initial flow is assumed to have the form of (16),

where we replace Ω̃ with (1/r) tanh (r/r0). The parameter r0 = 1 sets the ro-
tation speed. The initial spin chemical potential is given by Ωi = 0.03Ti/2,
while the initial baryon chemical potential is given by µi = µ0 g(x, y, z),
where µ0 = 200 MeV. With this setup, we let the system evolve in Minkowski
time starting at t0 = 0.1 fm using Eqs. (11), (13), (14) and (15). Once the
evolution is finished, we initialize the normalized polarization tensor with

ω̄µν =


0 0 0 0
0 0 ω̄xy ω̄xz
0 −ω̄xy 0 ω̄yz
0 −ω̄xz −ω̄yz 0

 , (17)

and evolve it on top of our hydrodynamic results, using Eq. (8) starting from
t = t0. The results of the latter calculations are presented in Fig. 1. Initially
(top left panel), the ω̄xy (medium grey/red) component dominate |y| < 6
region, while the ω̄yz and ω̄zz components dominate the y > 6 and y < −6
regions, respectively. During the subsequent evolution, the spin polarization
is transferred to different regions of space due to the non-trivial velocity
field of the medium. At the very end of the evolution, the component ω̄xy
dominates over the other components in almost the entire space.
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Fig. 1. (Colour on-line) The components of the spin polarization tensor: ω̄xy

(medium grey/red), ω̄xz (light grey/green) and ω̄yz (dark grey/blue) in the re-
action plane (x–y) at times: t = 0.1, 2, 4, 6, 8, 10 fm.

Our study shows that, if the dynamics of the spin polarization is included
in the fluid modelling, the spin polarization of the medium may change
significantly over its evolution. Such a fluid dynamic stage is missing in the
models used so far for interpreting the data. Thus, it is of great importance
to properly model the early-time dynamics of the spin polarization as this
may significantly affect the final results.

4. Summary

Employing a novel formulation of relativistic perfect fluid hydrodynamics
for polarized systems of particles with the spin 1/2, we numerically studied
the evolution of a rotating spin-polarized source resembling the ones created
in high-energy heavy-ion collisions. We find that spin polarization tensor
undergoes a non-trivial evolution in the hydrodynamic stage which may sig-
nificantly affect the final results used for the interpretation of experimental
data.
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