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At zero baryon density, lattice QCD is an established tool that provides
precise theoretical results. Calculations at non-zero densities, however,
require new techniques to deal with the sign problem. In this work, we
will review our recent effort to investigate QCD at non-vanishing baryon
chemical potential.
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1. Introduction

Correlations of conserved charges are important observables for the inves-
tigations of finite-density QCD. In this work we will summarize our results
published in [1]. We will then explore the possibility to constrain the critical
endpoint with these fluctuations as presented in [2]. In the following, we will
use the notation χB,Q,S

i,j,k = ∂i+j+k(p/T 4)
(∂µ̂B)i(∂µ̂Q)j(∂µ̂S)k

with µ̂ = µ/T .

2. Fluctuations

We present results of an high-precision analysis on an 483×12 lattice. A
more detailed description as well as precise information on the lattice set-up
can be found in Refs. [1, 3]. We use analytical continuation from imaginary
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chemical potential to determine the χB fluctuations at µB = 0. We analyze
data for eight different values of µB = i jπ8 with j ∈ {0, 1, 2, 3, 4, 5, 6, 7}. In
our analysis, we use the following Ansatz for the pressure:

χB
0 (µ̂B) =

p

T 4
= c0 + c2µ̂

2
B + c4µ̂

4
B + c6µ̂

6
B +

4!

8!
c4ε1µ̂

8
B +

4!

10!
c4ε2µ̂

10
B , (1)

where ε1 and ε2 are drawn randomly from a normal distribution with µ =
−1.25 and σ = 2.75. The values were chosen in a way to allow for χB

8 to take
the value predicted by the hadron resonance gas, as well as the result from
the toy model introduced in Section 3. From the Ansatz, we can calculate
the derivatives that can be measured on the lattice:

χB
1 (µ̂B) = 2c2µ̂B + 4c4µ̂

3
B + 6c6µ̂

5
B +

4!

7!
c4ε1µ̂

7
B +

4!

9!
c4ε2µ̂

9
B , (2)

χB
2 (µ̂B) = 2c2 + 12c4µ̂

2
B + 30c6µ̂

4
B +

4!

6!
c4ε1µ̂

6
B +

4!

8!
c4ε2µ̂

8
B , (3)

χB
3 (µ̂B) = 24c4µ̂B + 120c6µ̂

3
B +

4!

5!
c4ε1µ̂

5
B +

4!

7!
c4ε2µ̂

7
B , (4)

χB
4 (µ̂B) = 24c4 + 360c6µ̂

2
B + c4ε1µ̂

4
B +

4!

6!
c4ε2µ̂

6
B . (5)

We perform a correlated fit for χB
1 (µ̂B), χB

2 (µ̂B), χB
3 (µ̂B) and χB

4 (µ̂B) for the
different values of µB to determine the fitting parameters c2, c4 and c6. From
the parameters, we can determine χB

2 (0) = 2c2, χB
4 (0) = 24c4, χB

6 (0) = 720c6
and χB

8 (0) = 24c4ε1. The results are shown in figure 1. These equations show
the relation between χB

4 and χB
8 that are just related by the factor of ε1 (in

the same way χB
4 and χB

10 are related by a factor of ε2). In this way, we take
into account the influence of higher order corrections to our fit function.
We choose 1000 different values for ε1 and ε2 and, in addition, we include
either seven or eight different values of µB in our data. All resulting fits are
combined in a histogram and weighted with the Akaike information criteria
[4], thus alowing to estimate the systematic error. The statistical error is
determined by the Jackknife method and both errors are added quadratically
to get the combined error shown in the plots.
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Fig. 1. (Colour on-line) Results for χB
2 , χB

4 , χB
6 and an estimate for χB

8 on a Nt =
12 lattice as functions of the temperature, obtained from the single-temperature
analysis (see the text). We plot χB

8 in green to point out that its determination is
guided by a prior, which is linked to χB

4 . The black curve in each panel corresponds
to the toy model introduced in [1, 5].

3. Looking for the critical point

To look for the critical endpoint in the QCD phase diagram, one can try
to calculate the radius of convergence of an expansion in µB. Two obvious
expansions for this are either the pressure

p(µ) = p0 + p2µ̂
2 + p4µ̂

4 + p6µ̂
6 + . . . (6)

or the fluctuations that are directly related

χB
2 (µ) = 2p2 + 12p4µ̂

2 + 30p6µ̂
4 + . . . (7)

We define

rp2n =

√
p2n
p2n+2

and rχ2n =

√
2n(2n− 1)

(2n+ 1)(2n+ 2)
rp2n . (8)

In the limit of n −→∞, both rp2n and rχ2n converge to the same value which
is the radius of convergence and which guarantees that there is no criticality
within this radius. However, since we only know the fluctuations up to χB

8
as discussed in the previous section, we will first test this procedure for a toy
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model in which the critical endpoint is known. We use unimproved staggered
fermions on an Nt = 4 lattice. For this set up, the critical endpoint has been
already determined [2, 6, 7]. The results for rp2n and rχ2n are shown in the
left panel of figure 2. For a temperature where the critical endpoint is close
by (right site of the left panel of figure 2), the ratios seem to converge to
the correct value. However, as discussed in more detail in Ref. [2], due to
the structure of χB

6 , there is always a temperature for which the ratios seem
to converge, independent of the real value for the critical point. For the
Nt = 12 data, the rχ2n and the ratios from the hadron resonance gas are
shown in the right panel of figure 2. Here, the errors are still large.
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Fig. 2. On the left panel: The ratios rp2n and rχ2n (Eq. (8)) on an Nt = 4 lattice.
On the very left, the temperature is close to the crossover temperature. Next to
it, the temperature is close to the temperature for the critical endpoint. The black
arrow marks the value for the critical endpoint from [7]. On the right panel: The
rχ2n (Eq. (8)) ratios for different temperatures [2].

Instead of investigating a toy model with a known critical endpoint, we
can also try to describe the data with a toy model without any critical
behavior. If one fits the data for χB

1 /µ̂B at µB = 0 with an analytic function
of T and assumes that any change with respect to the chemical potential is
a linear shift of this function, one can determine all fluctuations analytically
(more detail on this toy model can be found in Ref. [5]). The results of this
toy model are shown with black curves in figure 1. They agree well with the
data.
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