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ENERGY DEPENDENCE OF FISSION-FRAGMENT
NEUTRON MULTIPLICITY IN 235U(n, f)∗
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A consistent framework for treating the energy dependence of fission-
fragment neutron multiplicities is presented. The shape evolution of the
compound nucleus towards scission is treated in the strong damping limit
using the Metropolis walk method. The available excitation energy at scis-
sion is then divided statistically between the two fragments using micro-
scopic level densities. Deformation energies, which contribute to the exci-
tation energy when the fragments relax to their ground-state shapes, are
also computed. From the total fragment excitation energies, the number of
emitted neutrons is obtained and illustrated for neutron-induced fission of
235U.

DOI:10.5506/APhysPolBSupp.12.499

1. Introduction

Nuclear fission is a complex process and is, despite 80 years after its dis-
covery [1, 2], still not fully understood. From a theoretical perspective,
it is desirable to describe the process within a self-consistent quantum-
mechanical microscopic framework. Although there has recently been a
rapid progress in fission models based on density functional theory (see e.g.
Refs. [3–6]), large-scale calculations with these models require enormous
computing time. To simulate neutron- and γ-emission, one has to employ
more phenomenologically-based models. Most of the available codes start
from mass and total kinetic energy distributions obtained from experiment.
Examples of this are the Los Alamos Model [7] and its refinements [8], the
PbP model [9], FREYA [10], CGMF [11] and FIFRELIN [12]. An exception
is the semi-empirical GEF model [13] which can calculate quantities for the
whole fission process but at the expense of introducing several parameters
adjusted to experimental data.
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Another class of models is based on a classical Langevin description of the
fission dynamics (see, e.g. Refs. [14–16]), which require evaluating a potential
energy surface, a collective inertia tensor, and a dissipation tensor. In the
idealized limit of strong dissipation, the shape evolution can be simulated
by a Metropolis walk [17] on the multi-dimensional potential-energy surface.
A consistent framework for treating the energy dependence of the shape
evolution was developed [18] by combining the Metropolis walk method with
microscopically calculated level densities [19]. The assumption of strongly
damped collective motion is also supported by recent calculations based on
density functional theory [20].

We report on further developments [21, 22] of the Metropolis walk method
in which the available excitation energy at scission is divided between the two
nascent fragments based on their microscopically calculated level densities.
The separated fragments also obtain an additional excitation energy contri-
bution (deformation energy) when they relax to their ground-state shapes.
From the total fragment excitation energies calculated in this way, the num-
ber of emitted neutrons from the fragments are obtained and illustrated for
neutron-induced fission of 235U.

2. Shape evolution

The shape evolution is treated by the Metropolis walk method presented
in Ref. [18]. Formally, this treatment corresponds to the highly dissipative
limit of the general Langevin description, leading to the Smoluchowski equa-
tion of motion. The system is characterized by its shape χ, described by
five parameters: the overall elongation given by the quadrupole moment Q,
the neck radius c, spheroidal deformations εf1 and εf2 of the two nascent
fragments, and the mass asymmetry α. The potential energy U(χ) is cal-
culated within the macroscopic–microscopic model [23] in a grid of more
than 6 million shapes, where the macroscopic part is calculated within the
finite-range liquid-drop model and the microscopic part is calculated with
the folded-Yukawa single-particle model. The same single-particle model is
also employed in the microscopic calculations of level densities [19] for the
6 million shapes used in the Metropolis walks. Since most of the structure
of the level density appears at low excitation energy, microscopic level den-
sities are employed up to excitation energy E∗ ≈ 6 MeV, and then smoothly
continued upwards by an analytical expression, as described in Ref. [18].

Each Metropolis walk is started with a fixed total energy Etot in the
second minimum. Steps are then taken in the potential-energy landscape
based on microscopic level densities with a local excitation energy given by
E∗(χ) = Etot − U(χ). The walks are continued across and beyond the
outer barrier until the neck radius c has become smaller than the critical
neck radius c0. A value of c0 = 1.5 fm is used based on comparisons with
experimental data for the total kinetic energy of the fragments [22].
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Once the critical neck radius has been obtained, the value of the potential
energy at this shape U(χ), the mass asymmetry coordinate αg and the two
fragment deformations εf1 and εf2 are registered. The number of protons Z
and neutrons N in a fragment are determined by requiring the same Z/N
ratio as for the fissioning nucleus. In the present study, only fragments with
even mass number and even Z and N are considered. One million walks are
performed to obtain convergence of the results.

3. Energy partition

Since the shape evolution is treated in the strong damping limit, the
collective kinetic energy associated with the shape evolution prior to scission
is neglected. The available excitation energy at scission is then given by the
difference between the total energy, Etot, and the potential energy of the
scission configuration, χsc,

E∗sc = Etot − U(χsc) . (1)

The excitation energy of the compound nucleus at scission is assumed to
be divided statistically between the two fragments, i.e. the heavy-fragment
excitation energy, E∗H, is given by the following microcanonical distribution:

P (E∗H, E
∗
sc) ∼ ρ̃(NH, ZH, E

∗
H, εH) ρ̃(NL, ZL, E

∗
sc − E∗H, εL) , (2)

where
ρ̃(Ni, Zi, E

∗
i , εi) =

∑
Ii

(2Ii + 1) ρ(Ni, Zi, E
∗
i , εi, Ii) (3)

is the effective density of states of a nucleus with neutron and proton num-
bers Ni and Zi, deformation εi, and excitation energy E∗i , with i = H,L.

In order to take into account the structure effects at low energies, the
same microscopic level density method employed for the compound nucleus
is used to calculate level densities ρ(Ni, Zi, E

∗
i , εi, Ii) of fragments. All states

with different angular momentum Ii are calculated up to excitation energy
E∗ ≈ 12 MeV. The level densities are then extrapolated to higher excitation
energies using Eq. (8) of Ref. [18], where the parameter e0 in the formula
a = A/e0 is determined by matching with the microscopic level density in the
range of 9–12 MeV. Since we are only interested in the energy distribution,
we sum over the fragment angular momentum, Ii, to obtain the effective
density of states.
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Since the energy is assumed to be partitioned between the fragments
at the scission point, it is the fragment deformations at scission that need
to be used in the calculations of the level densities. These deformations
are usually different compared to the ground-state deformations as seen in
Fig. 1. Both the calculated average fragment deformations at scission (black
circles) and the ground-state deformations (red crosses) display a saw-tooth
behaviour as a function of fragment mass for thermal-neutron-induced fission
of 235U. However, the scission deformations tend to be below the values of
the ground-states deformations, towards more oblate shapes. In particular,
fragments around A ∼ 150 have deformations at scission furthest away from
their ground-state deformations.
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Fig. 1. (Colour on-line) Calculated average fragment deformation at scission (black
circles) and standard deviation (black dashed lines) for thermal-neutron-induced
fission of 235U compared to their ground-state deformations (red crosses). (Frag-
ments A = 114–118 also have local prolate minima at ε ∼ 0.2.) Figure from
Ref. [22].

It has been seen experimentally that in the split corresponding to (AH :
AL) = (130 : 106), the heavy fragment emits less neutrons than the light
fragment in thermal-neutron-induced fission of 235U (see, e.g. Fig. 5 in [24]).
This is in contrast to expectations if the energy is partitioned based on
their heat capacities as in a Fermi-gas model with level density ρFG(E∗) ∼
exp[2

√
aE∗], with a = A/(8 MeV). Figure 2 shows the energy distribu-

tion P (E∗H) for the heavy fragment corresponding to this mass-split for an
energy E∗sc = 10 MeV to be partitioned, and the deformations considered
are typical of that division. Both the energy distribution calculated with
the microscopic level density (grey/blue histogram) discussed above and the
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simplified Fermi-gas level density (solid red curve) yield rather broad dis-
tributions due to the smallness of the nuclear system. The macroscopic
form yields smooth Gaussian-like distributions peaked at E∗H/E

∗
L = AH/AL,

whereas the microscopic form yields more complicated distributions due to
quantal structure effects.
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Fig. 2. (Colour on-line) Distribution function P (E∗
H) for heavy-fragment excitation

energy for mass-division (AH : AL) = (130 : 106) in 235U(n, f) for scission energy
E∗

sc = 10 MeV, obtained using microscopic level densities (grey/blue histogram)
and Fermi-gas level densities (solid red curve). Figure from Ref. [21].

In addition to the inherited excitation energy from the compound nu-
cleus, fragments also obtain a deformation energy Edef(A) = M(A, εsc) −
M(A, εgs), which is converted into statistical fragment excitations later on as
the fragment shapes relax to their ground-state forms. The shape-dependent
fragment masses,M(A, ε), are calculated in the same macroscopic–microscopic
model [25] used in calculations of the potential-energy surfaces. Fragments
A ∼ 150 obtain the largest deformation energy due to having a deformation
at scission furthest away from its ground-state deformation as seen in Fig. 1.

4. Neutron multiplicity

After a fragment has been fully accelerated and its shape has relaxed
to its ground-state form, it de-excites by emitting neutrons and photons.
We only consider neutron emission and assume that no photons are emitted
until neutron emission is no longer energetically possible. Since we only
consider incident neutrons with low kinetic energy, we also neglect emission
of neutrons and photons before scission as well as emission from the neck.
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The prompt neutron evaporation is modelled as a single neutron evapora-
tion until no further neutron emission is energetically possible. This method
was employed in Ref. [10] using Fermi-gas level densities. Here, we use mi-
croscopically calculated level densities at their ground-state deformations.
Since the fragment angular momentum I is hardly affected by the evapora-
tion, the energy available for neutron evaporation is taken as E = E∗− Ērot,
where Ērot is the average rotational energy (which will later contribute to
the photon radiation). The kinetic energy εn of the evaporated neutron from
a fragment (Z,N,E, ε) is sampled from the spectrum ∼ ρ̃′(E′; ε′)εn, where
ρ̃′ denotes the effective level density in the daughter fragment (Z ′ = Z,
N ′ = N − 1, E′ = E − εn − Sn, ε′), with Sn being the neutron separation
energy in the mother fragment.

Using the presented model, the neutron multiplicity for each fragment in
235U(n, f) was recently shown [21] to give good reproduction of experimental
data. The dependence of total neutron multiplicity on incident neutron
energy is shown in Fig. 3, and is also seen to be described well. In particular,
all the calculated values lie inside the experimental error bars. Figure 4
shows the total neutron multiplicity distribution for incident neutron with
thermal energy. The calculated distribution capture the overall behaviour,
though the experimental data shows a slightly broader distribution.
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Fig. 3. (Colour on-line) Calculated average total neutron multiplicity ν̄tot (blue
circles) as a function of the energy of the incident neutron compared to experimental
data [26] (black squares) for 235U(n, f). Figure from Ref. [22].
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Fig. 4. (Colour on-line) Calculated multiplicity distribution for total emitted neu-
trons (solid line, blue circles) compared to experimental data [27] (dashed line,
black squares) for thermal-neutron-induced fission of 235U. Figure from Ref. [22].

5. Concluding remarks

We have presented a consistent framework for treating the energy depen-
dence of fission-fragment neutron multiplicities by combining the Metropolis
walk method with shape-dependent microscopic level densities for the frag-
ments. Based on Fermi-gas level densities, one would expect the available
energy at scission to be divided between the nascent fragments in propor-
tion to their heat capacities, while use of microscopic level densities leads
to more complicated energy distributions. Calculations of the number of
emitted neutrons from each fragment with microscopic level densities in
235U(n, f) compare well with experimental data [21].

We have shown that the dependence of the average total neutron mul-
tiplicity on the energy of the indicent neutron also give good reproduction
of experimental data. In addition to average neutron multiplicity, we can
describe the width of the distribution reasonably well, though the calculated
distribution is slightly narrower than what is seen experimentally.

The presented model is event-by-event which means that it can describe
correlations and fluctuations in quantities, in addition to average values. It
then introduces a considerable predictive power since only potential-energy
surfaces and level densities are needed as input. These are available for all
nuclei of interest, and the model can therefore readily be applied to other
fission cases as well, including cases where no experimental data yet exist.
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