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Transport coefficients, such as the collective potential, inertia, friction
and diffusion tensors, that are required in any dynamical description of the
fission process are reviewed. These are mandatory when solving e.g. the
Langevin equation that allows to follow the time evolution of a deformed,
hot rotating nucleus from its formation in a heavy-ion collision up to the
scission instability. The present study is carried out using a new shape
parametrization which we have developed and which is based on a Fourier
expansion of the nuclear shape function.
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1. Introduction

An accurate description of nuclear shapes relying only on very few col-
lective parameters is a very challenging task, especially in connection with
a large-amplitude collective motion, such as the fission process, which in-
volves a huge variety of nuclear deformations, from ground-state shapes not
far from sphericity up to very elongated and possibly necked-in configu-
rations as they appear when reaching the scission instability. Many very
powerful shape parametrizations have been developed in the past (see e.g.
[1] for a review). Let us simply mention here the expansion in spherical
harmonics due to Lord Rayleigh [2], still extremely popular nowadays in the
nuclear physics community, but also the so-called Funny Hills parametriza-
tion [3] or the Trentalange–Koonin–Sierk shapes [4], which have both been
very successful, in particular in connection with the fission process.
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We shall report here on the results of calculations concerning the trans-
port coefficients which are the indispensable building blocks of the descrip-
tion of any dynamical process. The process which we have in particular
in mind is the fission process, which we would like to depict by resolving
the Langevin equation, i.e. a classical equation of motion, which contains,
however, most of the quantum structure of the nuclear many-body problem,
taking specially into account such complicated problems as the dissipation
of collective energy into intrinsic (single-particle) excitation, as described by
a friction term and the fluctuation of the collective coordinates, that appear
in such a statistical approach through a diffusion term (see Ref. [5] for a
review).

We are going to do that by using a parametrization of the nuclear de-
formation relying on a Fourier expansion of the nuclear shape, that we have
recently developed [6, 7], and that has proven to be rapidly converging and
to allow for a very accurate description of deformed nuclear shapes [8, 9].
We are thus able with only 4 collective variables that correspond to elonga-
tion, left–right asymmetry, non-axiality and neck formation to describe the
above-mentioned very large variety of nuclear shapes that can possibly occur
during the fission process. This shape parametrization has, e.g. allowed us
in the past to account for the coexistence and the competition between dif-
ferent fission valleys generating different fission modes. We have thus been
able to identify the coexistence of 3 different fission modes in heavy Fm
isotopes, corresponding to a compact asymmetric, an elongated symmetric
(so-called superlong ) and a particularly compact symmetric mass split [7].

After introducing in some detail the above-mentioned Fourier shape
parametrization in Section 2, we will give in Section 3 a brief description
of the Langevin approach of dissipative dynamics and of the transport func-
tions (also called coefficients) that enter the Langevin equation. In Section 4,
we will explain how to determine these transport functions for any nuclear
deformation and show some first results on their form and behaviour before
concluding.

2. The Fourier shape parametrization

The capacity to define the deformation dependence of the energy of a
nucleus in a simple yet efficient way, using as few collective coordinates as
ever possible, is an extremely demanding task. What is, in addition, highly
desirable is the capability to test its convergence. This is, e.g. the case of
Lord Rayleigh’s expansion of the nuclear radius R(θ, ϕ) in spherical har-
monics [2], but not so for the famous Funny Hills (FH) shape parametriza-
tion [3] of the Copenhagen group, which is, however, much better suited to
describe the shape of fissioning nuclei as demonstrated in Ref. [10]. Other
shape parametrizations that have had a large success, in particular in rela-



Transport Coefficients Within a Fourier Shape Parametrization 539

tion with the fission process and that need to be quoted in this connection
are the expansion in Legendre polynomials [4] of the square distance ρ2(z) of
the nuclear surface from the symmetry z axis in cylindrical coordinates (ex-
actly as for the FH shapes) of Trentalange, Koonin and Sierk, the quadratic
surfaces of revolution of Nix [11] and the Cassini ovals of Pashkevich [12, 13],
where the last two shapes have the disadvantage, just as the FH shapes, of
not being open, i.e. not allowing to test their convergence. One fundamen-
tal advantage for the description of the fission process, as we see it, of e.g.
the Funny Hills shapes over Lord Rayleigh’s expansion in spherical harmon-
ics is that it parametrizes the distance squared ρ̃2s (z) of a surface point to
the symmetry z axis rather than the radius squared R2(θ, ϕ) in spherical
coordinates.

Having these two conditions in mind, i.e. to parametrize the square dis-
tance of a surface point to the symmetry axis and to allow for a test of
convergence by increasing the number of parameters, we have found [6] that
an expansion of ρ̃2s (z) in a Fourier series is

ρ̃2s (u)

R2
0

=
∞∑
n=1

[
a2n cos

(
(2n− 1)π

2
u

)
+ a2n+1 sin

(
2nπ

2
u

)]
, (2.1)

where R0 is the radius of the corresponding spherical nucleus having the
same volume and u = (z − zsh)/z0, where 2z0 is the length of the nucleus
and zsh a parameter that guarantees that the centre of mass of the shape is
located at the origin of the coordinate system, yields an excellent description
of nuclear shapes.

Non-axial shapes can be generated by assuming that the cross section of
the nucleus perpendicular to the z axis has, at any z value, the form of an
ellipsoid as shown in Fig. 1. It can be shown [14] that the profile function

z

ρ

zsh

zneck-z0+zsh z0+zshzl zr

R12 = zr - zl

b

a

Fig. 1. Schematic visualization, in cylindrical coordinates, of the parameters enter-
ing the definition of the profile function defined by Eq. (2.2).
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ρ2s (z, ϕ) can then be written as

ρ2s (z, ϕ) = ρ̃2s (z) f(ϕ) = ρ̃2s [u(z)]
1− η2

1 + η2 + 2η cos(2ϕ)
, (2.2)

where the non-axiality parameter η is a function of the coordinate z and
defined by the ellipse half-axis a(z) and b(z) shown in the figure

η(z) =
b(z)− a(z)

b(z) + a(z)
, where a(z) b(z) = ρ2s (z) . (2.3)

For the sake of simplicity, we will, however, assume in the following that η
is a constant, i.e. is z-independent.

Considering the nucleus as an incompressible fluid, the condition that
the volume of that body should stay constant in the deformation process
allows to express the length 2z0=2cR0 of the deformed nucleus through the
relation

∞∑
n=1

(−1)n−1
a2n

2n− 1
=

πR0

3z0
. (2.4)

The condition that the centre of mass should be located at the origin of the
coordinate system leads to the following expression for zsh:

zsh =
3 z20

2πR0

∞∑
n=1

(−1)n
a2n+1

n
. (2.5)

To illustrate the fast convergence of the Fourier expansion of deformed
shapes, we show in Fig. 2 the contribution of different orders of that ex-
pansion for one left–right symmetric and one left– right asymmetric shape.

Even though this expansion is converging very rapidly, there are several
minor details that can still be improved. As one can see from the table
below, the lowest-order term for a spherical shape has a Fourier coefficient
close to unity, while higher-order terms have very small, but non-vanishing
contributions. These spherical Fourier coefficients are found to be given by

a
(0)
2n = (−1)n−1

32

π3 (2n− 1)3
and a

(0)
2n−1 = 0 (2.6)

TABLE I

Values of the Fourier expansion coefficients a(0)n for a spherical shape.

n 2 4 6 8 10

a
(0)
n 1.03205 −0.03822 0.00826 −0.00301 0.00142
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Fig. 2. Contribution of different orders of the Fourier expansion to the function
ρ2s (z) for a left–right symmetric (left) and one left–right asymmetric shape (right).

What is somehow unpleasant is that the quadrupole parameter a2 decreases
for increasing elongation, as can be seen from Eq. (2.4). To cure this little
problem, one can introduce, as a function of the Fourier coefficients an, new
deformation parameters qn that all vanish for a spherical shape. This can, of
course, be done in different ways. What we believe a clever way to proceed,
is to define the new shape coefficients qn in such a way that along the liquid-
drop path to fission they all, except for the elongation parameter q2, remain
essentially zero. This leads to the following definition of the qn:

q2 =
a
(0)
2

a2
− a2

a
(0)
2

, q3 = a3 , q4 = a4 +

√(q2
9

)2
+
(
a
(0)
4

)2
,

q5 = a5 − a3
q2 − 2

10
, q6 = a6 −

√( q2
100

)2
+
(
a
(0)
6

)2
. (2.7)

It is clear that when taking quantum effects and pair correlations into ac-
count, higher order Fourier coefficients will not all stay exactly equal zero
all along the path to fission, but take on some small, but non-vanishing val-
ues. We believe, however, that our way to introduce the new qn collective
coordinates is the best one can do to keep the number of these coordinates
as small as ever possible and to be able to describe the entire path of the
nuclear system from ground state to the scission instability with essentially
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three deformation parameters, one, q2, for elongation, one left–right asym-
metry parameter q3 and one neck-formation parameter q4 plus, if necessary,
one non-axiality parameter η.

Using Eq. (2.2) and the above relations, all transport functions entering
the Langevin equation can be evaluated as we will show in Section 4.

3. The Langevin equation of dissipative dynamics

Nuclear reactions such as the fusion or the fission process are very com-
plex phenomena which are related to a large transfer of nuclear mass as
well as a substantial transfer of nuclear energy from the collective to the
single-particle degrees of freedom, which can be considered, in such an ap-
proach, as a heat reservoir. The derivative of the collective potential V (~q )
with respect to the collective coordinate (here the deformation parameter)
qi plays the role of the driving force Fi(~q ). The collective kinetic energy is
a quadratic form of the collective velocities q̇i, the time derivatives of the
collective coordinates describing the nuclear shape, with an inertia tensor
Mij . The dissipation of collective energy into intrinsic (single-particle) ex-
citation is described by the friction tensor γij , and the fluctuations of the
collective coordinates which appear in such a statistical approach by the
diffusion tensor Dij .

In many applications, the dynamics of such a reaction is described by the
Fokker–Planck equation [15] through the distribution probability w(~q, ~p, t)
of finding a nucleus at a given point in the collective phase-space built from
the deformation parameters qi and conjugate momenta pi

∂w

∂t
=
∑
i

∂V

∂qi

∂w

∂pi
−
∑
i,j

M−1ij pi
∂w

∂qj

+
∑
i,j

∂

∂pi

[∑
k

γikM−1kj pj w

]
+
∑
i,j

Dij
∂2w

∂pi ∂pj
. (3.1)

It has been shown (see, e.g. [15]) that such a transport equation, derived on
the basis of statistical (stochastic) mechanics, is equivalent to a Langevin
equation with a normally distributed random force

dqi
dt

=
∑
j

M−1i,j pj ,

dpi
dt

= − dV

dqi
− 1

2

∑
j,k

dM−1jk
dqi

pj pk −
∑
j,k

γijM−1jk pk + FL
i (~q, t) ,

(3.2)
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where FL
i is the Langevin random force defined as

FL
i (~q, t) =

∑
j

gij(~q )Γj(t) , (3.3)

with the diffusion tensor
Dij =

∑
k

gik gkj (3.4)

and Gaussian-distributed random numbers Γj(t) with vanishing mean value
〈Γj(t)〉 and delta-correlated variance〈

Γi(t)Γj
(
t′
)〉

= 2 δij δ
(
t− t′

)
. (3.5)

One can then determine the transport coefficients V (~q ), Mij , γij and
Dij that enter the Langevin equation governing the time evolution of the
nuclear system. This is what is going to be done now.

4. The transport functions of the Langevin equation

As immediately seen from Eq. (3.2), the Langevin equation that we plan
to solve, is a classical Hamilton-type equation of motion for the collective
coordinates qi and the associated conjugate momenta pi. It is clear that in a
multidimensional coordinate space, quantities such as the collective mass and
the friction coefficient are going to be tensors rather than simple coefficients,
just as the driving force is going to be determined by the components of the
gradient of the collective potential describing the deformation energy of our
nuclear system. The first and probably the most important quantity that
needs to be determined is, therefore, this collective potential V (~q ), which is
calculated as the nuclear deformation energy, i.e. the energy of the deformed
nucleus relative to the energy at the spherical configuration

V (~q , T, L) = F (~q, T, L)− F (~q = 0, T = 0, L = 0) . (4.1)

Notice, please, that instead of the total energy E of the nuclear system, we
have written here the Helmholtz free energy F given by

F (~q, T, L) = E(~q, L)− a(~q )T (4.2)

with a(~q ) the deformation-dependent level-density parameter (see, e.g. [10]).
Since, as already mentioned in the preceding section, fusion as well as the

fission process involve the transfer of particles, but also of energy between
the collective and the intrinsic degrees of freedom, it turns, indeed, out
indispensable to take the nuclear excitation into account. This is done here
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by a description of the excited nuclear system as part of a grand-canonical
ensemble. One has, however, to keep in mind that excitation cannot only be
of thermal, but also of rotational origin, since the compound nuclear system
that one is studying has, e.g. been formed in a heavy-ion collision with non-
zero impact parameter and might, therefore, carry a non-negligible amount
of rotational angular momentum L, what we have taken into account in
Eqs. (4.1) and (4.2).

To calculate the nuclear energy, we rely on the macroscopic–microscopic
approach

Emac(~q, L) = Emac(~q, L) + Emic(~q, L) , (4.3)

where the Lublin–Strasbourg Drop model [16] is used for the liquid-drop-
type energy, including a curvature A1/3 term in the leptodermous expan-
sion and a deformation-dependent congruence energy term [17, 18]. This
approach has been demonstrated [16] to yield precise nuclear ground-state
masses and fission-barrier heights

Emac(~q, L)=Evol+Esurf(~q )+Ecur(~q )+ECoul(~q )+Ecngr(~q )+Erot(~q , L) , (4.4)

where the deformation dependence of the different terms is calculated [1]
through shape functions Bi that express the corresponding energy con-
tribution Ei relative to the one at the spherical shape, like Esurf(~q ) =
Bsurf(~q )Esurf(~q = 0). These shape functions Bi are entirely determined
by the density profile functions ρ2s (z, ϕ) of Eq. (2.2). The nucleus being con-
sidered as an essentially incompressible fluid, the volume term is, of course,
deformation-independent.

The microscopic part in (4.3) is obtained with the Strutinsky shell-
correction method [19] using single-particle levels of a Yukawa-folded mean
field and the BCS theory with a constant pairing strength seniority force [20]
to account for the pairing correlations.

As an illustration, we show in Fig. 3, the deformation energy of the nu-
cleus 228Ra in the (q2, q3) plane. One clearly identifies the nuclear ground
state at a prolate deformation of q2 ≈ 0.35 > 0 which is left–right symmetric
(q3 = 0), a fission isomeric state at q2 ≈ 0.80, again left–right symmetric, a
second barrier which is higher that the first, but which is obviously overcome
by going through left–right asymmetric shapes before reaching the scission
configuration somewhere beyond q2 ≈ 2.1. One obviously observes here two
fission valleys, one symmetric and the other asymmetric where the asym-
metric valley seems to be deeper than the symmetric one. We thus expect
some bimodal fission in 236Pu with an asymmetric fission that dominates.
Let us mention here that this deformation energy landscape has been given
just as an example about what information can be obtained when looking at
such deformation energies. Even though the landscape shown here has been
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obtained for a nucleus at zero temperature and zero angular momentum, we
need to insist here on the fact that similar results can, of course, be obtained
for nuclear systems with thermal or rotational excitation (or both).
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Fig. 3. Deformation energy landscape of the nucleus 228Ra as a function of the
elongation q2 and left–right asymmetry coordinate q3. In all the deformation points
of this plane, the energy has been minimized with respect to the neck parameter q4.
Some selected shapes are displayed on top and bottom of the landscape.

Let us now turn to the other ingredients of the Langevin or Fokker–
Planck equation, namely the collective mass, the friction and the diffusion
tensor. In the approach of an irrotational flow, the inertia tensor is expressed
in the Werner–Wheeler approximation [21] as

Mij = ρ0

∫
V

[(
Aρi A

ρ
j +Aϕi A

ϕ
j

)
ρ2s (z, ϕ) +Azi A

z
j

]
d3r , (4.5)

where the Aνj are the expansion coefficients of the velocity field in ν direction
(ν = z, ρ, ϕ) which are derived in Ref. [22].

At not too small temperatures, the friction tensor is well-approximated
by the wall formula [23]

γij =
ρ0
2
v̄

zmax∫
zmin

dz

2π∫
0

dϕ

∂ρ2s
∂qi

∂ρ2s
∂qj√

4ρ2s + 1
ρ2s

(
∂ρ2s
∂ϕ

)2
+
(
∂ρ2s
∂z

)2 (4.6)

frequently used in dissipative-dynamics calculations related to the fission of
thermally excited nuclei, where ρ0 is a uniform density and v̄ some average
nucleon velocity.
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The diffusion tensor is finally obtained in our approach through the Ein-
stein relation

Dij = T γij , (4.7)

a relation that should be a good approximation at high nuclear tempera-
tures T .

The mass, friction and diffusion tensors derived in this way have been
obtained in the space of the Fourier parameters ak. What we are finally
interested in, however, are the expressions of these quantities as expressed
in the space of our new collective coordinates qν , since it is in that space
that we are going to solve the Langevin equation. The transformation from
the ak space to the qν space is given by the following equations:

Mµν =
∑
k,`

Mk`
∂ak
∂qµ

∂a`
∂qν

and γµν =
∑
k,`

γk`
∂ak
∂qµ

∂a`
∂qν

. (4.8)

Let us show in the following some of the components of the resulting mass
and friction tensors. These components are universal in the sense that they
do not depend on the specific nucleus studied, except for a trivial dependence
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Fig. 4. Components of the inertia (left) and the friction tensor (right column)
in the (q2, q3) plane corresponding respectively to the elongation and left–right
asymmetry degree of freedom. The diagonal components for elongation (top) and
neck degree of freedom (bottom row) are shown.
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on the nucleon number A, but only of the shape profile functions ρ2s (z, ϕ).
We thus show in Fig. 4 the diagonal components B22 and B44 of the mass
tensor corresponding to the elongation and the neck degree of freedom, as
well as for the corresponding components G22 and G44 of the friction tensor.

5. Conclusions

A new very rapidly converging Fourier expansion that allows for a very
versatile description of nuclear shapes, in particular for the large variety of
nuclear deformations encountered in the fission process, is used to produce
deformation energy surfaces that are able to describe such fine details as the
coexistence of different fission valleys leading to different fission channels. In
addition, we have presented the expressions for the components of inertia,
friction and diffusion tensors corresponding to the degrees of freedom defined
by this shape parametrization and that correspond to elongation, left–right
asymmetry, neck formation and non-axiality. The next step should now
be to incorporate all these transport functions into the Langevin equation
to allow for the description of the dynamics of the fission process. This
Langevin equation will be coupled to Master equations to account for the
possible de-excitation of the compound nucleus through the evaporation of
particles (n, p, α), but also of γ rays. Such a de-excitation process leads to
a cooling of the system which can thus end up as a evaporation residue, a
process which could be of great importance for the synthesis of super-heavy
elements. Work along this direction is under way.
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