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Following a recent discovery of the simultaneous signs of the octahedral
and tetrahedral symmetries in 152Sm, we discuss the issue of a competition
between the two symmetries in atomic nuclei together with the identifica-
tion criteria. Illustrations using selected rare-earth and zirconium nuclei as
examples are presented.
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1. Introduction

The issue of finding an evidence of the presence of tetrahedral symmetry
in atomic nuclei preoccupied several authors in the past, both theorists and
experimentalists. Among the first theory predictions obtained with the help
of a realistic phenomenological mean-field approach, which indicated the
presence of the well-pronounced tetrahedral (Td) symmetry minima in some
heavy even–even nuclei, are those of Ref. [1]. The authors pointed out the
existence of the new spectroscopic properties of the single-particle spectra
of the mean-field Hamiltonians with tetrahedral symmetry. Indeed, as it is
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well-known from group theory, an appropriate realisation of the tetrahedral
symmetry for the systems of Fermions is the so-called double tetrahedral-
group TD

d . The latter has two 2-dimensional and one 4-dimensional irre-
ducible representations. As a consequence, and in contrast to the case of
the ‘usual’ deformations studied so far, the nucleonic spectra of tetrahedral-
deformed nuclei are composed of three families of levels, those belonging to
the 4-dimensional representation carrying up to 4 nucleons per level. These
properties gave rise to the introduction, in the cited reference, of a new la-
belling system of the corresponding single-particle levels as an alternative to
the traditional Nilsson labelling.

The presence of tetrahedral symmetry minima in many nuclei throughout
the Periodic Table has been predicted in Ref. [2] with tetrahedral magic
numbers Zt, N t = 32, 40, 56, 64, 70, 90, 112, 136. The possible presence of
the tetrahedral symmetry minima in the Z = N nuclei in the mass A ∼ 70
region has been suggested with the help of the Skyrme HF method in Ref. [3].

As the next step of the evolution, it has been predicted in Ref. [4] that the
tetrahedral deformations should be accompanied by the octahedral one, the
new symmetry corresponding to the point-group Oh, in several nuclei of the
rare-earth region. This prediction has been confirmed using the experimental
data versus theory modelling in the recent Ref. [5], in which the results
obtained with the spin-parity and particle-number projected HFB methods
together with the group-theory methods have been employed.

In the present article, we address the question of how universal the mech-
anism of the simultaneous presence of the two deformations is. In partic-
ular, it has been pointed out in Refs. [4, 5] that in the rare-earth nuclei,
one should expect the coexistence of these two deformations, whereas in the
recent Ref. [6], it has been predicted that the same should be expected for
at least some actinide nuclei. In this article, we will focus on the lighter
nuclei of (and around) zirconium, in which the above property is predicted
by us not to apply. The issue attracts certain specific interests in terms of
interpreting the observed nuclear shape symmetries and symmetries more
generally, as the result of the spontaneous symmetry breaking, e.g. octahe-
dral by tetrahedral one. Indeed, on the one hand, the tetrahedral symmetry
group is the sub-group of the octahedral one, whereas on the other, the signs
of the simultaneous presence of the two may be seen as a manifestation of
the spontaneous breaking of the symmetry generated by a given group by
one of its subgroups.
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2. Evolution of concepts about identification criteria
for nuclear tetrahedral symmetry

Let us briefly remind the reader about evolution of the ideas concerning
criteria of identification of the tetrahedral symmetry in atomic nuclei.

2.1. Early ideas based on collective model and the zero-point motion

To begin with, it will be instructive to consider a typical structure of the
potential energy surface in a doubly-magic tetrahedral symmetry nucleus.
Figure 1 presents the case of the tetrahedral doubly-magic 154

64Gd90 as an
example. As one can see from the figure, in addition to the ‘usual’ compe-
tition between the prolate and oblate axially symmetric minima, one finds
the characteristic pair of low-lying symmetric tetrahedral-symmetry minima
at α32 ≈ ±0.13 and α20 = 0.
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Fig. 1. Shape competition: Quadrupole minimum at α20 ≈ 0.22, and tetrahedral
one with symmetric minima at α32 ≈ ±0.13; Woods–Saxon mean field, Ref. [7].

Since the orientation of quantum tetrahedral-deformed objects can be
defined (in contrast to the objects of spherical symmetry), they may generate
rotational bands with the rotational energies satisfying EI ∝ I(I + 1). One
can demonstrate using simple geometrical arguments that the dipole and
quadrupole moments of the tetrahedral-symmetric nuclei vanish. It follows
that the quadrupole transitions, which dominate the de-excitations patterns
of the rotational bands vanish — as well as the dipole transitions. Thus,
one could expect an existence of the excited rotational states with vanishing
E2 transitions, thus possibly manifesting a sequence of isomeric states with
EI ∝ I(I + 1) spacing.
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Following the elementary notions of collective nuclear oscillations, one
needs to consider the zero-point motion of at least two vibrational modes:
The one, also called ‘tri-axial octupole’ or α32-tetrahedral oscillation and
the quadrupole oscillation in the direction of α20, which dynamically1 breaks
tetrahedral symmetry and induces non-vanishing quadrupole moments.

Moreover, increasing angular momentum of rotation which contributes
to the partial individual angular momentum alignments due to Coriolis ef-
fects, distinguishes a direction in space and contributes in addition to the
zero-point motion to the tetrahedral symmetry breaking. Thus, it has been
suggested in a number of publications that due to the dynamical presence of
the quadrupole oscillations and the nucleonic alignment, the B(E2) transi-
tions are never strictly zero. According to such a picture, one would expect
that at relatively high angular momenta, the tetrahedral configurations in-
duce some E2 transitions due to symmetry breaking especially since the
transition probabilities are proportional to (∆EE2

γ )5. Such transitions, how-
ever, cease existing at the bottoms of the bands giving rise to the presence
of the EI ∝ I(I + 1) energies not connected via E2 transitions anymore.

It turns out that experimental data on several nuclei satisfy these cri-
teria, as e.g. the results on 154Gd illustrated in Fig. 2, but as long as the
B(E2) values are not measured, the above interpretation remains a hypoth-
esis. The specifically designed measurements were performed using ultra-
high resolution γ-ray spectroscopy on the neighbouring 156Gd nucleus, in
which an analogous band structure exists, Ref. [9]. Results indicate that the
quadrupole moment of the corresponding negative parity band is very close
to the quadrupole moment of the ground state. Today, it is believed that
the E2 transitions, whose probabilities are proportional to (∆EE2

γ )5, loose
in competition with the E1 transitions to the ground-state band when the
spin decreases, given the fact that ∆EE2

γ decrease quickly, whereas ∆EE1
γ

are of the order of 1 MeV and sometimes even increase with decreasing spin,
cf. Fig. 2. We may plausibly expect that similar conclusions apply to the
neighbouring nuclei in this region.

Thus, the discussed negative-parity bands, which were originally inter-
preted as possibly carrying signs of tetrahedral symmetry, should rather be
interpreted as axially-symmetric pear-shape octupole-vibration bands. In
the meantime, a more rigorous interpretation has been developed in terms
of the spin-, and particle-number projected Hartree–Fock–Bogolyubov ap-
proach and the group theory, by the Fukuoka–Strasbourg collaboration,
Refs. [10, 11] and [6]. The main results are summarised below.

1 Let us note that the concept of the zero-point motion inherent to the collective
model proposed originally by A. Bohr strictly speaking invalidates the concept of any
geometrical symmetry. Indeed, accepting the presence of the zero-point motion for
at least/only quadrupole (αλ=2,µ=0,2) and octupole (αλ=3,µ=0,±1,±2,±3) modes is not
compatible with any static geometrical symmetry of the nuclear surface.
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Fig. 2. Experimental results for the two rotational bands in 154Gd; the data are
from Ref. [8].

2.2. Recent evolution: ideas based on the group theory considerations

Let us consider double point-group TD
d as the symmetry group of a mean-

field Hamiltonian, Hmf . We will also introduce an auxiliary tetrahedral-
symmetric quantum rotor Hamiltonian, Hrot. It will be used as a discussion
reference for the case of rotating even–even tetrahedral-symmetric nuclei
and for this reason, Hrot will be assumed invariant under the Td-group.

We will be interested in the properties of the quantum rotor spectra
resulting from the quantum-rotor Hamiltonian symmetry-properties. These
can be conveniently described with the help of the irreducible representations
of the symmetry group in question. Tetrahedral Td-group has 5 irreducible
representations, here denoted A1, A2, E, F1 and F2. Whereas a more com-
plete discussion of the spectral properties of various bands generated by the
quantum rotor in question can be found in Ref. [6] and references therein,
here and in what follows, we will limit our discussion to the unique, ‘tetra-
hedral ground-state band’ having as the band head the Iπ = 0+ state.
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Using the theory of group representations and the tables of group char-
acters, one may demonstrate that the collective band built on the Iπ = 0+

tetrahedral ground-state is composed of the A1-representation states with
the following spin-parity combination, cf. e.g. Refs. [10–12]:

A1 : 0+, 3−, 4+, (6+, 6−)︸ ︷︷ ︸
doublet

, 7−, 8+, (9+, 9−)︸ ︷︷ ︸
doublet

, (10+, 10−)︸ ︷︷ ︸
doublet

, 11−, 2× 12+, 12−︸ ︷︷ ︸
triplet

, . . .

︸ ︷︷ ︸
Forming a common parabola

(1)
The presence of the characteristic parity doublets and a complete lack of
the I = 1 and 2 states deserves noticing.

It has been demonstrated in Refs. [10, 11] by explicit microscopic
calculations using the spin-parity and particle number projected
Hartree–Fock–Bogolyubov cranking approach with the Gogny in-
teractions, that the EI-vs.-I rotational sequences predicted by
the tetrahedral symmetric field manifest the above quantum-rotor
properties to a remarkable approximation, whose degree increases
with the tetrahedral deformation increasing.

It then follows that in order to be able to advance in the discussion of the
coexistence between the tetrahedral and octahedral symmetries in nuclei and
in particular to propose the experimentally applicable identification criteria,
it will be of particular importance to establish the similar features for the
rotor Hamiltonians with the octahedral symmetry as well. One may apply
the same methods of the group representation theory to conclude that in
the case of the octahedral symmetry, the lowest energy part of the spectrum
of the rotor takes the form of two branches, one with positive

A1g : 0+, 4+, 6+, 8+, 9+, 10+, (12+, 12+)︸ ︷︷ ︸
doublet

. . . , Iπ = I+

︸ ︷︷ ︸
Forming a common parabola

(2)

and one with the negative parity

A2u : 3−, 6−, 7−, 9−, 10−, 11−, 12−, . . . , Iπ = I−︸ ︷︷ ︸
Forming another (common) parabola

, (3)

where the role of the A1 representation in the previous case is played by
A1g and A2u in the present case. The bands defined in Eqs. (1)–(3) are
illustrated qualitatively in Fig. 3.

The discussed symmetry properties have been used in Ref. [5] to identify
the combination of octahedral and tetrahedral symmetries using existing
experimental data on 152Sm nucleus.
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Fig. 3. Schematic: Tetrahedral symmetry band, full line, composed simultaneously
of positive and negative parity states, some of them (6±, 9±, 10±) degenerate,
cf. Eq. (1). Dashed lines illustrate the positive and negative parity octahedral band-
partners, cf. Eqs. (2)–(3). According to the discussed criteria, the pure tetrahedral
symmetry case should result in one band with both parity states forming approxi-
mately a common parabola, whereas dominating octahedral symmetry might lead
to two close-lying but well-separated bands of the opposite parities as schematically
illustrated.

3. Possible Td-vs.-Oh coexistence: present or missing

As announced in the preceding sections, we wish to provide more details
about the possible scenarios as compared to the case identified in 152Sm in
Ref. [5]. We begin with the situation characteristic for the rare-earth nuclei.

3.1. Example of Td-vs.-Oh coexistence: rare-earth nuclei

Figure 4 illustrates the effect of the coexistence between the two sym-
metries in the case of one of the double-magic tetrahedral nuclei from the
rare-earth range: 154Gd, direct neighbour of 152Sm mentioned earlier. The
potential energy projection shown here should be directly compared with
the one in Fig. 1. As one can see from the figure, tetrahedral and octahe-
dral deformations co-exist, the result deduced from the presence of the two
symmetric minima corresponding to α32 ≈ ±0.12 showing at the same time
that the tetrahedral-symmetry minimum is lowered by over 1 MeV when
the minimisation over o4 is allowed. Moreover, a pure octahedral symmetry
minimum (α32 = 0 and o4 ≈ 0.06) is predicted to coexist in this case.
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Fig. 4. Total energy calculations analogous to those shown in Fig. 1 but for the
octahedral (o4 ↔ {α40,±

√
5/14α4,±4}) and tetrahedral (α32) deformation projec-

tion; for the exact definition of the octahedral deformation cf. Ref. [13]. These
results suggest two high-rank symmetry mechanisms: Pure octahedral symmetry
configuration corresponding to α32 ≈ 0 at o4 ≈ 0.06, and the double minimum of
the combined tetrahedral, α32 ≈ ±0.12, and octahedral, o4 ≈ −0.08 deformations.

3.2. Counter example: pure tetrahedral symmetry in zirconium region

Figure 5 illustrates an appropriate potential energy surface for 96Zr.
Results show a pure tetrahedral-deformed ground-state minimum in this
nucleus. Let us notice that a deformed nucleus at the Iπ = 0+ (here:
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Fig. 5. Total nuclear energy surface for 96Zr projected onto the (α20, α32) deforma-
tion plane showing two symmetric tetrahedral symmetry minima at α32 ≈ ±0.12.
The importance of this indication is enforced by the results presented in Table I
and showing a very high value of the B(E3) value associated with the first Iπ = 3−

excitation in this nucleus.
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ground) state appears in any laboratory frame as spherical. The same is
approximately true for any particle–hole excited configurations coupled to
the Iπ = 0+ core of (A − 2) nucleons. It would be extremely important to
attempt identifying in this nucleus the predicted tetrahedral symmetry rota-
tional bands using the mass spectrometry methods as suggested in Ref. [6].
Furthermore, Fig. 6 shows that in the case of 96Zr deformation o4 has no
major effect on the absolute minimum of the total energy, therefore rein-
forcing the argument of a pure tetrahedral symmetry configuration for this
nucleus, in contrast to the previous case of 154Gd.

96
40Zr56

D
ef

or
m

at
io

n
o
4

Deformation α32

MeV

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
4.25
4.50
4.75
5.00
5.25
5.50
5.75

>6.00

Emin = −5.04 MeV
Eo = −4.41 MeV

Total Nuclear Energy

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

.

Fig. 6. Illustration similar to the one in Fig. 4 showing two symmetric tetrahedral
symmetry minima at o4 ≈ 0 indicating no coexistence between tetrahedral and
octahedral degrees of freedom in contrast to the previous case; these results predict
a pure tetrahedral symmetry configuration.

Experimental data in Table I show particularly high values of the B(E3)
reduced transition probabilities in nuclei in the vicinity of the doubly magic
tetrahedral nucleus 96Zr thus providing support to the predictions of a strong

TABLE I

Experimental values of the reduced transition probabilities B(E3) in Weisskopf
units for the first Iπ = 3− excitation; from NNDC http://www.nndc.bnl.gov

Nucleus: Z vs. N 52 54 56 58 60

64Pd — — — — 29± 10

44Ru — — 14± 3 — —
42Mo — — 31± 4 35± 3 —
40Zr 18.3± 11 — 57± 4 — —
38Sr — 18.3± 11 — — —

http://www.nndc.bnl.gov
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octupole effects in this nuclear range. Similar results are predicted to hold
for another doubly-magic tetrahedral nucleus, 104

40Zr64. Results in Fig. 7
show that the tetrahedral minimum corresponds again to the ground state
for the nucleus, since the absolute minima appear at a32 ∼ 0.16, a20 ∼ 0.0
and o4 ∼ 0.0. However, at the same time, the super deformed minimum
at ath20 ∼ 0.38 is also predicted together with the oblate shape minimum
at ath20 ∼ −0.20. These predictions are comparable to the experimental
quadrupole deformations of the neighbouring nuclei 102Zr and 106Mo, which
are aexp20 = 0.427± 0.044 and aexp20 = 0.354± 0.009, respectively, Ref. [14].
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Fig. 7. Top: Total nuclear energy surface for 104Zr projected onto the (α32, α20)

deformation plane. Bottom: Total nuclear energy projected onto the (o4, α32)

deformation plane. In this case, the pure tetrahedral deformed minimum appears
to be again the ground state but the strongly deformed (α20 ∼ 0.38) and oblate
(α20 ∼ −0.2) shapes are also predicted.



About Competition Between Tetrahedral and Octahedral Symmetries . . . 567

4. Summary and conclusions

We discussed the theory predictions related to the possible competi-
tion between the exotic tetrahedral and octahedral nuclei and the corre-
sponding criteria of the experimental identification. According to our pre-
dictions, in the zirconium nuclei, tetrahedral deformations appear not to
be accompanied by the octahedral ones, in contrast to the rare-earth and
actinide nuclei. Experimental manifestation of this prediction is expected
to take the form of a single parabolic branch composed of states Iπ =
0+, 3−, 4+, 6±, 6−, 8+, 9±, . . . , and can be today studied using mass spec-
trometry methods.
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Poland (NCN) under contract No. 2016/21/B/ST2/01227, the Polish–French
COPIN-IN2P3 collaboration agreement under project numbers 04-113 and
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