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We discuss criteria for experimental identification of the nuclear tetra-
hedral and octahedral so-called high-rank symmetries based on the mean-
field and group representation theories. We examine the possibly largest
search zones on the (Z, N)-plane: in addition to traditionally discussed
areas of even—even nuclei with proton and neutron numbers surrounding
the tetrahedral magic ones (Z§, N§ = 32, 40, 56, 64, 70, 90, 112, 136),
we discuss also the odd—even and even—odd nuclei for which the identifi-
cation criteria non-trivially differ from those for the even—even ones. We
also propose the appropriately chosen particle-hole excited states to profit
from the deformation driving mechanism contributed by combinations of
certain orbitals. The discussion is summarised in the form of a series of
‘user’ instructions.
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1. Introduction

In this article, we give a short account of the methods of identification of
tetrahedral and octahedral symmetry shapes in atomic nuclei with the help
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of the nuclear mean-field theory and the point-group representation theories.
We apply these concepts not only to the lowest-energy configurations in the
even—even nuclei (most often addressed in the literature), but also to the
odd-A nuclei, and certain excited configurations which involve tetrahedral-
deformation driving orbitals.

Since due to the short range of the nuclear interactions the shape of the
nucleonic distributions in nuclei follows that of the equipotential surfaces
of the mean-field potential, it follows that the shape symmetries are closely
related to those of the associated mean-field Hamiltonian.

It has been suggested over 20 years back, Ref. [1], that in some atomic
nuclei, well-pronounced potential energy minima may exist corresponding to
the tetrahedral symmetry shapes. The authors examined the nuclear stabil-
ity effects due to the spinor (so-called double) tetrahedral (TdD) point-group
of symmetry of the mean-field Hamiltonian and pointed to the physical con-
sequences of the presence of three irreducible representations of the group in
question, two non-equivalent 2-dimensional ones, and one 4-dimensional one.

The presence of the three irreducible representations implies that the
single-nucleon levels generated by the Hamiltonian with such a symmetry
form three independent families, as opposed to the two families of positive
and negative parity orbitals in the ‘usual’ case. The four-dimensional irre-
ducible representation implies the presence of the four-fold degenerate levels.
This four-fold degeneracy has never been observed so far but it has fasci-
nating quantum consequences in addition to the presence per se, such as
an existence of 16-fold degenerate particle-hole excited states in the nuclear
spectra. Moreover, the existence of four-fold degeneracies implies a system-
atic increase of the average level spacing in the single-nucleon spectra and
facilitates creating relatively big shell-gaps usually referred to as tetrahedral
magic gaps, see Fig. 1.

It has been shown in Ref. [1] that the tetrahedral symmetry implies the
presence of the new magic numbers at Z§, Nt = 56, 64, 70, 90, 100, 112,
136. It has also been indicated that the three irreducible representations,
denoted E, E* and G, can easily be identified and used for the level-labelling,
an interesting alternative to the Nilsson labelling in this case, cf. Figs. 3 and 4
of Ref. [1].

The first case of experimental evidence for the tetrahedral symmetry, in
1528m, has been announced in Ref. [2]. The mean-field single-nucleon spectra
for this nucleus are illustrated in Fig. 1 showing the tetrahedral shell gaps
and low-level density areas opening when deformation increases.

The extension of the above considerations predicting the presence of the
tetrahedral symmetry islands all over the (Z, N)-plane has been presented
in Ref. [3], whereas a possible coexistence between the tetrahedral and octa-
hedral symmetries has been presented in Ref. [5] focussing on the rare-earth
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Fig.1. Single-nucleon levels as functions of tetrahedral deformation, t3 = aso,
calculated using the Woods—Saxon Universal phenomenological mean field, Ref. [4].
Top — neutrons, bottom — protons. We use Cartesian labels, coefficients in round
parentheses give the probability amplitude related to each given label.

nuclei. The latter coexistence is of particular interest from the group theory
point of view given the fact that the tetrahedral group is a subgroup of the
octahedral one, Tq C Oy,.
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2. The link between the microscopic mean-field with high-rank
symmetries and collective rotation

In the more recent articles, Refs. [6-8|, the authors employed the newly
written numerical code solving the Hartree-Fock-Bogolyubov problem with
the Gogny interaction Hamiltonian allowing to break all geometrical symme-
tries. The algorithm employed the angular momentum and particle number
projection techniques. Below, we focus on the mean field and the collective
rotor properties separately.

2.1. The mean field within Hartree—Fock—Bogolyubov approach

The standard two-body Hamiltonian written down in a certain one-body

basis whose states are enumerated with ¢, = 1,2, ... M, and ¢ = 1,2, 3,4,
has the usual form of
T ot 1 At o
H = Ztelbcﬁcb +3 Z ZW1€2€3€4C€1%20€4C€3 . (1)
£102 L1482 €30y

With the help of the Bogolyubov transformation leading from the particle
state representation, {¢*, ¢}, to the quasi-particle representation, {31, 8},

B = Z (Ui + Vgt (2)
¢

with B denoting a Hermitian conjugate of the former, whereas the quasipar-
ticle vacuum |®) can be expressed using Thouless theorem

@) = NeZlo),  Z2=1L zuehet,
e
N = <O’¢>7 ZZ’K = (VU )g/g (3)

After obtaining the constrained HFB state |®), the quantum number pro-
jection is performed to obtain the projected wave functions of both parities

INZ(+ INZ(£) A 5 BN D
iRZ D) =3 g LD Pl PPV PZ), (4)
K

where the amplitudes g aZ(i) and the energy eigenvalues ECIY

tained employing the Hill-Wheeler relation

NZ(*) are ob-

INZ(+ INZ( INZ(%) N~ \rINZ(+ INZ(:I:)
Z Hg, i = BN Nk xr o (5)
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with the kernels defined as follows:

INZ(+) .
Hy ke H . L

Nz (= (@ Pl PN P7 P |®) . (6)
Ny ko 1

Interested reader is referred to Ref. [6] for mathematical details, whereas ap-
plications to examining the rotational properties of the nuclei in tetrahedral
symmetry states can be found in Refs. [6, 8], see also Refs. [2] and [9].

2.2. Quantum rotors with tetrahedral symmetry

Before discussing the consequences of the tetrahedral symmetry on the
structure of rotational bands resulting from the application of the angular-
momentum projection in the framework of the Gogny mean-field Hamilto-
nian, it will be instructive to recall the spectral properties of a structureless
quantum rotor with tetrahedral symmetry. This problem has been presented
in Ref. [10] with the help of the spherical-tensor operator-basis in the form of

A

o= (((fel) s od) wi). 0

m

n times

where [ = {f,l, fo, .f+1} are the collective angular momentum operators and
“®” refers to the Clebsch-Gordan coupling. Employing Eq. (7), the so-called
generalised quantum rotor Hamiltonian (cf. Ref. [10] and references therein)
can be constructed

0o A
Hrotor = Z Z h)\()T(f\(n) + Z [h)\uT;i\(n) + (_1)'uh§\—uTi\,u(n) )
n=0 A\ pn=1
(8)

where h), are adjustable constants. This expression reduces to the lowest
order tetrahedral symmetry rotor by adjusting the indices A and p as follows:

~ mD A~ A~
HrTotor = hoo T(S)(2) + h32 [TiQ - T§2] = Hsph(Q) + HTd : (9)
A A
Hsph(Q) HTd

Here, I:ISph(Q) x I? is by definition a spherically-symmetric second order
operator and Hr .(3) is a third order tetrahedral symmetry operator con-
structed out of components of I. The parameters hgg and hss can be adjusted
to simulate the desired rotational properties of the corresponding spectra.
The spectra of the rotor Hamiltonians with tetrahedral symmetry are com-
posed of what we refer to as tetrahedral bands which will be discussed next.
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3. Group-theory-induced structure of tetrahedral bands:
Implied users instructions for experimental search

In contrast to properties of the rotational bands produced e.g. by axially-
symmetric nuclei, tetrahedral symmetry bands are composed of states of
both parities and in the exact symmetry limit, they contain degenerate mul-
tiplets (see below). These properties are unique and allow to identify the
corresponding symmetry; the only common feature with the bands known
from the literature is the quadratic energy-spin dependence: Ej o< I(I + 1).

3.1. Tetrahedral bands in even—even nuclei: Tq group

It can be demonstrated using the exact methods of the point group
representation theory that the rotational bands of the tetrahedral symmetry
quantum rotors of even—even nuclei like the one in Eq. (9) can be classified
according to the 5 irreducible representations of the Ty group, here denoted
A1, Ag, E, F; and Fa, ¢f. Refs. [7, 8] and references therein. For instance,
the bands corresponding to irreducible representation A; form a common
parabola composed of the following sequence:

A0t 37,47 (67,67), 7, 8%, (9%,97), (10%,107), 117, 2 x 12F,127,... |
N—_—— N—_—— N———’

doublet doublet doublet triplet

(10)
whereas the other representations induce the following band structures:
Ay: 07,3%7,47,(67,67), 77,87, (9%,97), (101,107), 11+, 127, 2 x 127,...,
N—_—— N N—— ———
doublet doublet doublet triplet
(11)
E: (21,27),(4%,47),(5%,57),(6%,67),(77,77), (2x8T,2x87),(9%,97),...,
~———  — T — . — N —— ~— —
doublet doublet doublet doublet doublet quadruplet doublet
(12)
Fi: 17,27, (37,37),(4%,47),(2x5%,57),(67,2x67),(2x7",2x77),...,
—_——— ——
doublet doublet triplet triplet quadruplet
(13)
Fo: 17,27, (3*,3*), (4*,4*), (5*, 2x57),(2x 6*,6*), (2 x 7,2 % ), ...
——
doublet doublet triplet triplet quadruplet
(14)

It is worth emphasising that the lowest tetrahedral bands have a unique
I™ = 0" ground-state, so that the irreducible representation Ay, cf. Eq. (10),
plays a distinguished role.



Shortening the Way to Experimental Evidence for High-rank Symmetries ... 575

3.2. Tetrahedral bands in odd-A nuclei: T(? -group

As it is well-known from the group representation theory, the spinor (so-
called double) point groups differ from the classical point groups both in
terms of the numbers of the symmetry elements in the group as well as in
terms of numbers and structures of their irreducible representations. The
double point group of interest, T(Ii), possesses three irreducible representa-
tions introduced already in Sect. 1, denoted E, E* and G.

The first two of them can be recognised as parity-conjugate partners as
it can be seen from the following two sequences:

po L1757 7T 7L 0% (1 1Y f137 ) 137) (157 157
N 2’2) 2’2 727 2 72 ) 2 ) 2 9 2 72 PR

doublet doublet triplet doublet
(15)
g L 5F 77 7 97 f117 11t 2><13+ 137\ 15~ 15F
N 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 ) 2 )ttt
doublet doublet triplet doublet
(16)

whereas the third one, G, is composed of parity-multiplets: doublets, quadru-
plets, sixtuplets, octuplets, etc.

3V 37 (5T 5T (7T 7T 9t 9~ 1+ 11-
G: a5 o 'Y o o 'Y o o 72X a5 ' o a2>< 5 0 o9 )
2 72 2 72 2 72 2 72 2 2

doublet doublet doublet quadruplet quadruplet
13*t 13~ 15+ 15~ 21F 21~
2 — , = —_— , = ... 4 — , = e 17
X{Q’Q }’BX{Q’Q } X{Q’Q } (17)
quadruplet sixtuplet octuplet

As it can be seen from the above relations, again the band structures are
unique and characteristic of various combinations of opposite-parity states
and multiplets.

3.3. Tetrahedral band identification: User instructions

The rotational band structures presented in Sects. 3.1 and 3.2 define
the new branch of nuclear spectroscopy in statu nascendi: This is by try-
ing to determine the presence of approximate parabolic structures in these
very characteristic forms, which contain doublets, triplets, quadruplets . .. of
states in the very specific order, that we will be able to determine the pres-
ence of the underlying symmetry in subatomic physics. Below, we list in the
form of the short phrases which we refer to as ‘user instructions’ the main
strategic lines to follow.
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— FEven—even nuclei: Tetrahedral group T4q. The tetrahedral ground-

state band with its I™ = 0T band head is given by the irreducible
representation Aj, with the spin-parity sequence defined by Eq. (10).
It is characterised by the absence of states with I = 1 or 2 and by the
presence of parity doublets at I™ = 6%,9% 10%, etc. Other tetrahedral
symmetry bands, possibly lying higher in the energy scale, have the
spin-parity structures given by Eqgs. (11)—(14).

Even—even nuclei: Octahedral group Oy. One can profit from the
above information in order to conclude about the possible presences of
octahedral symmetry. The latter is expected to influence the structure
of Eq. (10) in that the states of positive and negative parities form
separate parabolic sequences, cf. Fig. 5 of Ref. [2] as an example. This
double-band structure can be employed as a direct complementary test
for the presence of Op-symmetry.

0dd-A nuclei: Tetrahedral double group Tg. The main strategical lines
to follow are analogous to the ones just listed: identify the spin-parity
sequences predefined by the group theory. However, the group struc-
ture of TdD is different from the group structure of Tg, and it follows
that the detailed structure of the spin-parity sequences for odd-A nu-
clei differs, as given by Egs. (15)—(17). A complementary strategy in
the research of odd-A nuclei, advocated in Ref. [9], is to combine the
first-order Coriolis coupling with the group theory considerations fol-
lowed in this article. Interested reader is referred to the above article
for details.

Vanishing dipole and quadrupole moments — mass spectrometry alter-
native. An important difficulty established long ago is related to the
fact that the tetrahedral and/or octahedral symmetry configurations
generate neither collective E1-, nor E2 transitions, the first allowed
being E3 — and thus even the most powerful y-detection systems can-
not provide any direct help (see, however, remarks below). Since the
usually dominating electro-magnetic signals are expected to be absent,
the most natural alternative is to employ the mass-spectrometry tech-
niques and the isomer search, cf. e.g. Sect. 3 of Ref. [2].

Vanishing dipole and quadrupole moments — population difficulties.
Another difficulty is related to the fact that tetrahedral symmetry
states do not generate any electromagnetic transitions of multipolarity
lower than A = 3 which would enable the detection of their presence;
equally importantly they cannot be populated via such transitions.
The corresponding ‘user instruction’ is to find appropriate nuclear re-
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actions, which allow for populating the sought states at relatively high
excitations energies at not too high (not exceeding the values of the
order of a dozen h) angular momenta.

— Particle-hole excited states with tetrahedral deformation-driving or-
bitals. At this point, let us emphasise that, in addition to examin-
ing the low-lying energy sequences of excited states in even—even and
odd-A nuclei in the vicinities of the tetrahedral doubly-magic nuclei
with proton and neutron numbers (Zy, Ny = 32, 40, 56, 64, 70, 90,
112, 136), one may focus on the specific particle-hole excited configu-
rations in which the hole-level is strongly up-sloping and the particle
level is strongly down-sloping. Examples of the corresponding struc-
tures are given in Fig. 1. Indeed, consider any one of the two 4-fold
degenerate up-sloping orbitals (full lines just below the N = 82 gap
in Fig. 1, top) and the down-sloping 4-fold degenerate orbital below
N = 94 gap. The particle-hole excitations involving these orbitals,
more precisely 1p—1h and 2p—2h, are illustrated in Fig. 2.

1l i
s 2r 2p-2h ]
S 1w} -
S
= 8 ]
= 1p-1h
& 6 P .
8
ks) 4 ]
i
2[ 152Sm 3
0 | | | | | | | | |

0 005 01 015 02 025 03 035 04
Tetrahedral Deformation t,

Fig. 2. Excitation energies of selected particle-hole excitations constructed in such
a way that the hole orbitals are up-sloping (4-fold degenerate orbital closed to
the N = 82 gap in Fig. 1, top) and the particle orbitals are down-sloping (4-fold
degenerate orbital below N = 94 gap, the same figure) as a function of increasing
tetrahedral deformation, t3 = a32. Emphasise degeneracy mechanism: the 1p—1h
excitation appears 16-fold degenerate, the 2p—2h one is 36-fold degenerate.

Let us notice that whereas 1p—1h excited state gains in energy with
tetrahedral deformation increasing more than 5 MeV (within the scale
of the figure), the 2p—2h configuration gains nearly 11 MeV under the
same conditions.
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Two extra properties deserve noticing.

— Large tetrahedral deformations far from the magic configurations.

Since the single-particle orbitals change very slowly with the proton
and neutron numbers, the behaviour of the two curves selected in this
example can be seen as ‘universal’ in a given mass range. It then
follows that it will be sufficient to select the proton and neutron num-
bers of the discussed nucleus sufficiently far from the magic numbers
in such a way that the energy corresponding Op—0Oh configuration is
flat in terms of t3, in which case the excited np—nh states superposed
with the Op—0h state will likely have a strong t3-deformation.

Extremely high degeneracies of the excited np—nh states. An impor-
tant element of consideration are unprecedented degeneracies of the
considered states. In the considered example of 2p—2h configuration,
the degeneracy is equal to 36. Without performing any detailed calcu-
lations, one may expect that the presence of those high degeneracies
should favour (increase the probability of) populating those particular
states in the case of tetrahedral (and/or octahedral) deformations.

Using v-multi-detector systems in the search for high-rank symmetries.
From the fact that in the exact symmetry limits, the first non-vanishing
electromagnetic radiation is expected to be of the E3-character (thus
orders of magnitude weaker than the one of lower multipolarities), one
could conclude, perhaps too rapidly, that the y-detection systems are
not very useful. Just on the contrary: One has to remember that most
of the predicted tetrahedral-symmetry nuclei are not exactly doubly
magic and, moreover, the symmetries are partially (even if weakly)
broken by the Coriolis alignment effects on top of which one has to ac-
count for the quadrupole zero-point oscillations. All these mechanisms
imply dynamical symmetry breaking effects resulting in weak, possibly
both E1 and E2 electromagnetic radiation, and the importance of the
powerful v-multi-detector systems should not be under-estimated.

4. Summary and conclusions

In this article, we briefly summarise the recent evolution of the ideas

about the identification of the tetrahedral and octahedral symmetries in
atomic nuclei. The central arguments are based on the application of the
microscopic mean-field theory in the realisation of the spin-parity and par-
ticle number projected Hartree—Fock—Bogolyubov approach with the Gogny
interactions together with the group-theory results. We provide a compact
formulation of the suggestions about the experimental choices in the form
of the ‘user instructions’ which are expected to help optimising the future
experiments.
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